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Abstract

An ω-language over a finite alphabet X is a set of infinite sequences

of letters of X. Previously studied syntactic equivalence relations defined

by ω-languages have mainly been relations on X
∗. In this paper the

emphasis is put on relations in X
ω, by associating to an ω-language L a

congruence on X
ω, called the ω-syntactic congruence of L. Properties of

this congruence and notions induced by it, such as ω-residue, ω-density,

and separativeness are defined and investigated. Finally, a congruence on

X
∗ related to the ω-syntactic congruence and quasi-orders on X

ω induced

by an ω-language are studied.

Keywords: ω-syntactic congruence, ω-language, dense language,
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1 Introduction

Various types of congruences on X∗ have been introduced in connection with
ω-words and ω-languages. The usual equivalence relations induced by an ω-
language L on X∗ are RL and PL, defined by (see, for example, [6]):

w ≡ v(RL) ⇔ (∀y ∈ Xω, wy ∈ L iff vy ∈ L)

w ≡ v(PL) ⇔ (∀x ∈ X∗, y ∈ Xω, xwy ∈ L iff xvy ∈ L).

Both RL and PL are equivalence relations on X∗ which coincide with the
Nerode and syntactic equivalence if L is a language over X∗. One easily proves
that RL is a right congruence and that PL is a congruence. The monoid
Syn(L) = X∗/PL is called the syntactic monoid of L.

∗This research was supported by Grant OGP0007877 of the Natural Sciences and Engi-

neering Research Council of Canada
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An ω-language L is said to be disjunctive or right disjunctive if the corre-
sponding relation PL or RL is the equality. It is dense if for every u ∈ X∗ there
exist x ∈ X∗, y ∈ Xω such that xuy ∈ L. Obviously, if an ω-language is dis-
junctive, it is dense. If the index of PL is finite, then L is said to be µ-regular.
(µ-regular ω-languages are sometimes referred to as finite-state ω-languages;
see, for example, [7]) Remark that the index of PL is finite if and only if the
index of RL is finite.

Disjunctive and right-disjunctive ω-languages and their properties have been
studied in [4]. Syntactic monoids of ω-languages and conditions under which
they are trivial have been investigated in [5]. In [6] it is shown that every finitely
generated monoid is isomorphic with the syntactic monoid of an ω-language.

The congruences that have been previously defined for ω-languages are mainly
congruences on X∗ (see [1], [7], [9], [10]) and consequently all the notions re-
lated to these congruences mainly refer to the set X∗. However, it is possible
to define congruences on Xω, in particular a congruence on Xω induced by an
ω-language.

The ω-syntactic congruence associated with an ω-language L ⊆ Xω will
be denoted by SL. Connected with the ω-syntactic congruence SL, one can
define the notions of ω-residue, ω-density and separativeness, which are the
counterparts in Xω of the classical notions of residue, density and disjunctivity.
The equivalence of the finitness of RL to the finiteness of SL implies that µ-
regularity is also characterized by the finitness of SL.

This paper studies the ω-syntactic congruence, its properties and related
topics. Moreover, a quasi-order on Xω is introduced and its relations with
separative ω-languages and other related notions are investigated.

2 Omega-syntactic congruences

An alphabet X is a finite nonempty set. X∗ is the free monoid generated by it
under the catenation operation. The elements of X∗ are words; in particular,
1 is the empty word, and X+ = X∗\{1}. Xω is the set of ω-words, that is, of
infinite sequences over X . The length of a word w ∈ X∗ will be denoted by |w|
and the cardinality of a set X by card(X). The catenation of two words u, v
will be denoted either by uv or by u.v.

Let M be a monoid with identity 1. An operand over M (see, for example
[3]) is a nonempty set T such that:

– with every pair x ∈ M, u ∈ T is associated an element xu ∈ T called the
product of x and u;

– (xy)u = x(yu) ∀x, y ∈ M, u ∈ T ;
– 1.u = u ∀u ∈ T .
A nonempty subset T ′ of T such that u ∈ T ′ implies xu ∈ T ′, ∀x ∈ M , is

called a suboperand of T over M and T ′ itself is an operand over M .
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For example, if X∗ and Xω are respectively the set of words and the set of
ω-words over X , then Xω is an operand over X∗.

An equivalence relation ρ over Xω is said to be compatible if

r ≡ s (ρ) ⇒ xr ≡ xs (ρ) ∀x ∈ X∗

A compatible equivalence relation will also be called simply a congruence.
Remark. Let ρ be a congruence over Xω and let T = {[u] | u ∈ Xω} be

the set of all the classes of ρ ([u] denotes the class containing u). Define the
product of x ∈ X∗ and [u] by x[u] = [xu]. Since ρ is a congruence, it is easy
to see that this product is well defined (i.e. it does not depend on the choice of
representatives for a given class). It follows then that T is an operand over X∗,
called the quotient-operand modulo ρ.

Definition 2.1 An ω-language L defines on Xω a binary relation SL by:

r ≡ s (SL) iff (xr ∈ L ⇔ xs ∈ L), x ∈ X∗, r, s ∈ Xω

i.e. Lr−1 = Ls−1, where Lr−1 = {x ∈ X∗ |xr ∈ L}.

The relation SL is a congruence, i.e., a compatible equivalence relation, and will
be called in the sequel the ω-syntactic congruence of L (see [10] for a similar
notion).

An ω-language L is called (see [5])
– a left ω-ideal if X∗L ⊆ L (i.e. if L is an X∗-subset);
– suffix closed or simply suf-closed if X∗[−1]L ⊆ L , i.e., if xu ∈ L implies

u ∈ L.
– absolutely closed if L = X∗L′ for a suf-closed ω-language L′.
For example, the ω-language L = X∗aω over X = {a, b} is a left ω-ideal and

it is suffix closed. The ω-language aω is suf-closed and hence L is absolutely
closed. Remark that an absolutely closed ω-language is always a left ω-ideal.

The ω-language W (L) = {u ∈ Xω|Lu−1 = ∅} is called the ω − residue of
L ⊆ Xω.

Proposition 2.1 Let L be an ω-language. The ω-syntactic congruence of L
has the following properties:

(i) L is a union of classes of SL;
(ii) If R is a congruence and if L is a union of classes of R, then R ⊆ SL.
(iii) If nonempty, the ω-residue W (L) is a class of SL and a left ω-ideal.

Proof. (i) Let u ∈ L and suppose that u ≡ v (SL). Since 1 ∈ Lu−1 = Lv−1 , the
word v = 1.v belongs to L.

(ii) Suppose that u ≡ v (R). If x ∈ Lu−1, then xu ∈ L. From the compati-
bility of R it follows that xu ≡ xv (R). The facts that L is a union of classes of
R and xu ∈ L, imply that xv ∈ L, x ∈ Lv−1. Consequently, Lu−1 ⊆ Lv−1 . Sim-
ilarly one can prove that Lv−1 ⊆ Lu−1. Therefore, u ≡ v (SL) which implies
R ⊆ SL.

(iii) Immediate because u ∈ W (L) if and only if Lu−1 = ∅. 2
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Corollary 2.1 If T is a class of a congruence R over Xω, then R ⊆ ST .

Proof. This is a special case of (ii). 2

Given an ω-language L, the index of RL (respectively SL) is the cardinality of
the set of classes of RL (respectively SL).

Recall that an ω-language L is called µ-regular if the index of RL is finite.
The next result shows that the µ-regularity of an ω-language can be character-
ized either by the finiteness of the index of RL in X∗ or by the finiteness of SL

in Xω.

Proposition 2.2 An ω-language L ⊆ Xω is µ-regular if and only if the index
of SL is finite.

Proof. If the ω-language L ⊆ Xω is µ-regular then the index of RL is finite
and therefore the set {w−1L| w ∈ X∗} is finite. Remark that Lu−1 =⋃

w∈Lu−1 [w]RL
. Indeed, if x ∈ [w]RL

for some w ∈ Lu−1 then x ≡ w (RL)
and wu ∈ L. This implies that for all v ∈ Xω, xv ∈ L iff wv ∈ L. In particular,
wu ∈ L implies xu ∈ L, that is, x ∈ Lu−1. The other inclusion is obvious. If RL

is of finite index, the union is finite and there are only finitely many different
unions, therefore the index of SL is finite.

Conversely, note that w−1L =
⋃

u∈w−1L[u]SL
. Indeed if v ∈ [u]SL

, u ∈ w−1L
then v ≡ u (SL) and wu ∈ L. As wu ∈ L iff wv ∈ L we have v ∈ w−1L. The
other inclusion is obvious. If SL is of finite index then the union is finite and
there are only finitely many different unions. This further implies that the index
of RL is finite, i.e., L is µ-regular. 2

Example 1 Xω is µ-regular because the index of SL is 1.

Example 2 L = aω = aaa · · ·aaa · · · over X = {a, b} is µ-regular. The classes
of SL are aω and the ω-residue W (aω). Therefore the index of SL is 2.

Example 3 Let L = {anbaω|n ≥ 1} over X = {a, b}. The classes of SL are L,
baω, aω and W (L) and the index of SL is then 4.

If X∗ is ordered lexicographically, X∗ = {a, b, a2, ab, ba, b2, · · ·}, then the
disjunctive ω-word u = aba2abbab2 · · · is not µ-regular because S{u} has an
infinite index.

Proposition 2.3 Let L, L1, L2 be ω-languages in Xω. Then:
(i) SL = SL̄ where L̄ denotes the complement of L in Xω;
(ii) SL1

∩ SL2
⊆ SL1∪L2

;
(iii) SL1

∩ SL2
⊆ SL1∩L2

.
(iv) If T ⊆ X∗ and L, T 6= ∅, then SL ⊆ ST−1L where T−1L = {u ∈

Xω | ∃t ∈ T, tu ∈ L}.
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Proof. (i) Immediate.
(ii) Let u ≡ v (SL1

∩ SL2
), that is, L1u

−1 = L1v
−1 and L2u

−1 = L2v
−1.

If xu ∈ L1 ∪ L2, then xu ∈ L1 or xu ∈ L2, hence xv ∈ L1 or xv ∈ L2.
Therefore xv ∈ L1 ∪ L2, that is, (L1 ∪ L2)u

−1 ⊆ (L1 ∪ L2)v
−1. By symmetry

(L1 ∪ L2)v
−1 ⊆ (L1 ∪ L2)u

−1 which implies u ≡ v (SL1∪L2
).

(iii) By (i) and (ii), we have:

SL1
∩ SL2

= SL̄1
∩ SL̄2

⊆ SL̄1∪L̄2
= SL1∩L2

.

(iv) Suppose u ≡ v (SL), that is, Lu−1 = Lv−1. If x ∈ T−1Lu−1, then
xu ∈ T−1L and txu ∈ L for some t ∈ T . Hence tx ∈ Lu−1 = Lv−1, txv ∈ L and
xv ∈ T−1L. Therefore x ∈ T−1Lv−1 which shows that T−1Lu−1 ⊆ T−1Lv−1.
By symmetry, the converse inclusion also holds. Hence u ≡ v (ST−1L). 2

The following proposition shows that all the congruences over Xω can be
obtained from the ω-syntactic congruences.

Proposition 2.4 Every congruence R (over Xω) is the intersection of ω-syntac-
tic congruences. More precisely, there exists a family of ω-languages Φ(R) =
{Li|i ∈ I} such that:

R =
⋂

i∈I

SLi

Proof. We can choose, for example, the family Φ(R) to be the family of all the
classes Li of R. By Corollary 2.1, if Li is a class of R, then R ⊆ SLi

, hence
R ⊆

⋂
i∈I SLi

.
Suppose now that u ≡ v (

⋂
i∈I SLi

) and let Lj be the class of R containing
u. Then u ≡ v (SLj

), that is, Lju
−1 = Ljv

−1. As 1.u = u ∈ Lj, we have
1 ∈ Lju

−1 = Ljv
−1 which implies 1.v = v ∈ Lj. Because Lj is a class of R, it

follows that u ≡ v (R) therefore
⋂

i∈I SLi
⊆ R. Consequently,

R =
⋂

i∈I

SLi
. 2

Recall that (see [5]) an ω-language L ⊆ Xω is absolutely closed if and only
if the syntactic monoid of L, Syn(L) is trivial, that is, card(Syn(L)) = 1. This
is equivalent to the fact that PL is the universal relation, i.e. has a unique class.
(Here Syn(L) = X∗/PL.)

Proposition 2.5 Let L be an absolutely closed ω-language, L 6= Xω. Then SL

has only two classes, L and the ω-residue W(L).

Proof. By a result of [5], the ω-language L is absolutely closed if and only if L
and the complement L̄ of L are left ω-ideals.

Let u ∈ L. Then Lu−1 = X∗ and L is contained in a class of SL. Since L is
a union of classes of SL, it follows that L is a class of SL. The complement L̄
of L being a left ω-ideal is therefore contained in the ω-residue W (L). Since L
and W (L) are classes of SL, they are the only two classes of SL. 2
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Proposition 2.5 does not hold anymore in case L is a suf-closed ω-language.
For example, let X = {a, b} and L = {aω, bω}. L is suf-closed but SL has three
classes: aω, bω and W (L).

In fact, there exist suf-closed ω-languages with the property that SL has
infinitely many classes.

Indeed, let X = {0, 1, 2, · · · , 9} and let

u1 = 12345678910111213 · · ·
u2 = 234567891011121314 · · ·

.......................
un = n(n + 1)(n + 2) · · ·

.........................

Then L is suf-closed but SL has infinitely many equivalence classes.

A nonempty ω-language L is called suffix-free (outfix-free) or simply suf-free
(out-free) if u, xu ∈ L (yu, yxu ∈ L) implies x = 1. An out-free ω-language is
always suf-free.

For example, the ω-language L = aba2b2 · · ·anbn · · · over X = {a, b} is out-
free.

Proposition 2.6 Let L be an ω-language. Then:
(i) If L is suf-free, L is a class of SL.
(ii) If L is out-free, then every class T of SL, T 6= W (L), is a suf-free

ω-language.

Proof. (i) If u ∈ L, then Lu−1 = {1}, hence L is contained in a class T of SL .
If v ∈ T, then Lv−1 = {1} and therefore v = 1.v ∈ L. Consequently, L = T .

(ii) Suppose that u and xu = v are words in T . Since T 6= W (L), there
exists y ∈ X∗ such that yu ∈ L. From u ≡ v (SL) it follows that yu ≡ yv (SL).
Since yu ∈ L, yv = yxu ∈ L. On the other hand, the fact that L is out-free
implies that x = 1, that is T is suf-free. 2

3 Omega-dense and separative ω-languages

An ω-language L ⊆ Xω is called dense iff for any word x ∈ X∗, there exist
u ∈ X∗ and y ∈ Xω such that uxy ∈ L. In other words, L is called dense iff
any word of X∗ occurs as a subword of a word of L.

One can generalize the notion of density from X∗ to Xω in the following
natural fashion. An ω-language L will be called ω-dense if any infinite word
occurs as a subword of a word in L. Formally,

Definition 3.1 An ω-language L is called ω-dense if its ω-residue W (L) = ∅.
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If Suf(L) = {v ∈ Xω|∃x ∈ X∗, ∃u ∈ L, u = xv} is the set of all suffixes of
words in L, then it is immediate that L is ω-dense iff Suf(L) = Xω.

Let X = {a, b, · · ·}. Then Xω, aXω and bXω are examples of ω-dense ω-
languages. Generally if L is ω-dense, then AL is ω-dense for all A ⊆ X∗, A 6= ∅.

Remark that, if {x1, x2, · · ·} is any ordering of X+, the ω-word u = x1x2 . . .
obtained by catenating the ordered sequence {x1, x2, . . .} is disjunctive, hence
dense. However, the following proposition shows that u is not ω-dense.

Proposition 3.1 Every ω-dense ω-language L over an alphabet X with at least
two letters, is infinite.

Proof. Let X = {a, b, · · ·} be an alphabet of cardinality greater than 1 and
assume, by reductio ad absurdum, that the ω-dense ω-language L = {u1, u2, · · · ,
un} over X is finite.

Consider the finite language {vi| 1 ≤ i ≤ n + 1} where vi = (aibi)ω . Since L
is ω-dense, there exist words x1,x2, · · · , xn, xn+1 such that

x1v1 ∈ L, x2v2 ∈ L, · · · , xnvn ∈ L, xn+1vn+1 ∈ L.

As L contains only n distinct words, the equality ui = xivi = xjvj will hold for
some i 6= j, that is,

ui = xi(a
ibi)ω = xj(a

jbj)ω, i 6= j.

This implies a = b – a contradiction. Consequently, our assumption that L is
finite was false.2

Recall (see, for example, [8]) that a subset P of X∗ is called dense (in X∗)
if for every w ∈ X∗ there exist words x, y ∈ X∗ such that xwy belongs to P .

For L ⊆ Xω, let Prf(L) = {x ∈ X∗|∃u ∈ L, u = xv} be the set of all prefixes
of the words in L. The next result gives a connection between the ω-density of
an ω-language and the density of the set if its prefixes.

Proposition 3.2 If L is ω-dense, then Prf(L) is dense (in X∗).

Proof. Let w be a word in X∗ and consider the ω-word wω . As L is an ω-dense
ω-language, there exists x ∈ X∗ such that xwω ∈ L. This implies, for example,
that xww is in Prf(L). This means that we have found the words x, w ∈ X∗

with the property xww ∈Prf(L), which assures that Prf(L) is dense. 2

The notion of density in X∗ is closely connected with the notion of disjunc-
tivity. An ω-language is disjunctive if its congruence PL is the equality. A
disjunctive ω-language is dense, but the converse does not hold. An analogous
of disjunctivity when considering relations over Xω is the separativeness.

An ω-language L is separative if its ω-syntactic congruence separates all the
words of Xω: every word of Xω belongs to a different equivalence class.
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Definition 3.2 An ω-language L is called
(i) separative iff Lu−1 = Lv−1 implies u = v.
(ii) quasi-separative iff Lu−1 = Lv−1 6= ∅ implies u = v.

In other words, L is separative if SL is the identity and quasi-separative if
SL is the identity outside the ω-residue W (L).

It is easy to see that L is separative iff for every pair u, v ∈ Xω , u 6= v, there
exists x ∈ X∗ such that xu ∈ L, xv /∈ L or vice versa. Simple examples seem to
be difficult to find. The following proposition shows how to obtain separative
languages from special types of partitions of Y +, where Y ⊂ X and |X | ≥ 2.

Remark that if |X | = 1 then |Xω| = 1 and the language Xω is trivially
separative.

Proposition 3.3 Let X be a finite alphabet with |X | ≥ 2, let a ∈ X and let
Y = X \ {a}. Furthermore let Π = {Y0, Y1, . . . , Yn, . . .} be a partition of Y +

with infinitely many classes, all of them infinite. Then there exists a separative
language asociated to this partition.

Proof. For n ≥ 0, let

Tn = {u ∈ Xω|u = anw, w /∈ aXω}.

Let c be the cardinality of the set of the real numbers. The set Xω and the sets
Tn, n ≥ 0, have the same cardinality c. Consequently, these sets can be listed
using the same set I of indices where I has the cardinality c:

Tn = {uni
∈ Xω|i ∈ I}, n ≥ 0.

Each class Yn of the partition Π contains infinitely many words of Y +. For
each n, let Pn be the set of all nonempty subsets of Yn. Clearly the cardinality
of each Pn is c. This implies in particular that the elements of Pn can be listed
using the same index set I:

Pn = {Sni
|i ∈ I, Sni

⊆ Yn, Sni
6= ∅}

Furthermore, Sni
∩ Smj

= ∅ for n 6= m.
The ω-language L is defined in the following way.
For each n ≥ 0 and i ∈ I, let Lni

= Sni
auni

. Then:

L =
⋃

n≥0,i∈I

Lni
∪ aω

Let us show that L is separative, that is, Lu−1 6= Lv−1 for all u, v ∈ Xω, u 6= v..
We have to consider the following cases.

Case 1. u ∈ Tm, v ∈ Tn with m 6= n. Then u = umi
, v = unj

with
i, j ∈ I and u = ambα, v = anc β where m, n ≥ 0, b, c ∈ Y and α, β ∈ Xω.
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Without loss of generality, we can assume that m < n. If x ∈ Smi
, then

xau = xaumi
∈ Lmi

⊆ L. By the definition of the sets Srk
, x ∈ Smi

implies
that x /∈ Srk

for r 6= m. Therefore xav = xaunj
/∈ L and Lu−1 6= Lv−1.

Case 2. u ∈ Tn, v ∈ Tn and u = uni
, v = unj

. Since u 6= v, we must have
i 6= j. Furthermore u = anbα, v = ancβ, b, c ∈ Y , α, β ∈ Xω. Since i 6= j, then
we have Sni

6= Snj
. Hence there exists x ∈ Sni

, x /∈ Snj
or vice versa. Suppose

the first case. Then xau ∈ Lni
⊆ L, but xav /∈ Lnj

. Since v = unj
, then, from

the definition of the ω-languages Lrs
and L, we have xaunj

∈ L iff xaunj
∈ Lnj

iff x ∈ Snj
, in contradiction with x /∈ Snj

.
Case 3. u ∈ Tn, v = aω. Suppose Lu−1 = Lv−1. Clearly ak ∈ Lv−1 for

k ≥ 0. Since u = uni
= anbα, then akaanbα ∈ L for k ≥ 0, a contradiction

because xaanbα ∈ L implies x ∈ Y + and ak /∈ Y +.2

Proposition 3.4 Every separative ω-language L is ω-dense.

Proof. If L is not ω-dense, then its ω-residue W(L) is non empty. Furthermore,
W(L) is infinite and W(L) is a class of the congruence SL. Since L is separative,
SL is the identity, a contradiction. 2

While it is difficult to find simple examples of separative ω-languages, this
is no more the case for quasi-separative ω-languages as shown in the following
proposition.

Proposition 3.5 Every ω-word u is quasi-separative.

Proof. Let u be an ω-word and let r ≡ s (Su) with r, s /∈ W (u). Then there
exist x, y ∈ X∗ such that u = xr = ys. The equality ur−1 = us−1 implies
x ∈ us−1 and u = xr = ys = xs. This further implies r = s, therefore u is
quasi-separative. 2

Let L ⊆ Xω be an ω-language with a non empty ω-residue W (L). We can
construct a congruence ρ on Xω in the following way: W (L) is a class ρ and all
the other classes of ρ are the singletons taken from the complement of W (L). By
analogy with semigroups, such a congruence will be called the Rees congruence
associated with the ω-residue of L (see [3]).

Proposition 3.6 Let L be an ω-language such that W (L) 6= ∅. Then
(i) L is quasi-separative ⇔ SL is the Rees congruence associated with W (L).
(ii) L is quasi-separative and L̄ = W (L) ⇔ SL is the identity on L and

L̄ = Xω\L is a class of SL.

Proof. (i) ”⇒” Since u ∈ W (L) if and only if Lu−1 = ∅, it is clear that W (L)
is a class of SL. Since SL is the identity on Xω\W (L), it follows that SL is the
Rees congruence associated with W (L).

”⇐” Since the Rees congruence is the identity outside the ω-residue, SL is
the identity on Xω\W (L), that is, L is quasi-separative.
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(ii) ”⇒” If u, v ∈ L, we have Lu−1 = Lv−1 = ∅, that is, u ≡ v(SL). If
u, v ∈ L, u 6= v, then Lu−1 6= ∅, Lv−1 6= ∅. Since L is quasi-separative, we have
Lu−1 6= Lv−1, i.e., u is not equivalent to v modulo SL. Therefore SL is the
identity on L and L̄ is a class of SL.

”⇐” Suppose that Lu−1 = Lv−1 6= ∅. This implies there exists x ∈ X∗ such
that xu, xv ∈ L. Since u ≡ v(SL) and SL is compatible, xu ≡ xv(SL). Since SL

is the identity on L and xu, xv ∈ L, then xu = xv therefore u = v. This means
L is separative. It is easy to see that W (L) = L̄. 2

Proposition 3.7 Let L be a µ-regular ω-language. If L is quasi-separative,
then L is finite.

Proof. The ω-language L is a union of classes of SL (Proposition 2.1) Since L is
µ-regular, the index of SL is finite(Proposition 2.2). If L is not finite, then there
exists a class T of SL such that T ⊆ L and T infinite. If u, v ∈ T with u 6= v,
then Lu−1 = Lv−1 6= ∅, a contradiction because L is separative. Therefore L is
finite. 2

4 Congruences SL and PL

In this section, we consider a connection between the ω-syntactic congruence
SL on Xω and the congruence PL on X∗ associated with an ω-language L.

With every congruence ρ on Xω, one can associate a congruence s(ρ) on X∗

defined in the following way:

c s(ρ) d ⇔ cu ≡ du (ρ) ∀u ∈ Xω.

Proposition 4.1 The relation s(ρ) is a congruence on X∗.

Proof. It is immediate that s(ρ) is an equivalence relation. Since ρ is compatible,
it follows then that s(ρ) is left compatible. Let x ∈ X∗. Since xu ∈ Xω, from
cu ≡ du (ρ) for all u, it follows that cxu ≡ dxu (ρ) (take for u the word xu).
Hence cxu ≡ dxu (ρ) for all u ∈ Xω therefore cx ≡ dx (s(ρ)), which implies
that s(ρ) is right compatible. Consequently, s(ρ) is a congruence of X∗. 2

Remark. If ρ is the universal relation on Xω, then s(ρ) is also the universal
relation on X∗. If ρ is the identity on Xω, then s(ρ) is the identity on X∗.

The next proposition shows how the congruence PL of L is related to the
ω-syntactic congruence SL.

Proposition 4.2 If L ⊆ Xω, then PL = s(SL).

Proof. Suppose that c ≡ d (PL), c, d ∈ X∗. This means that, for every x ∈ X∗

and u ∈ Xω, xcu ∈ L ⇔ xdu ∈ L. This further implies cu ≡ du (SL) for every
u ∈ Xω and hence c s(SL) d. Therefore PL ⊆ s(SL).
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Suppose now that c s(SL) d, i.e. cu ≡ du (SL) ∀u ∈ Xω. This implies that
for every x ∈ X∗, xcu ∈ L ⇔ xdu ∈ L, i.e. c ≡ d (PL), and s(SL) ⊆ PL.

Therefore PL = s(SL). 2

We give now a few examples of the connection between SL and PL.

Example 1 Let L = aω over X = {a, b}. The classes of SL are aω and W (aω).
The classes of PL are a∗ and {xby|x, y ∈ X∗}. The syntactic monoid of L is
isomorphic to the monoid consisting of only 1 and 0.

Example 2 Let L = {aω, bω} over X = {a, b}. Then the classes of SL are aω,
bω and W (L). The classes of PL are {1}, a+, b+ and X+\{a+, b+}.

Example 3 If L = {anbaω|n ≥ 1} over X = {a, b}, then the classes of SL are
L, aω, baω, W (L). The classes of PL are {1}, a+, {b}, {ab}, bX+ ∪ X∗b2X∗.

Example 4 Let L = {u} be an ω-word. By Proposition 3.5, u is quasi-
separative and the classes of Su are the ω-residue W (L) (if not empty) and
the singletons consisting of the ω-words in U = Xω\W (L). Let

u = a1a2 . . . ak . . . , u1 = u, u2 = a2 . . . ak . . . , uk = akak+1 . . .

v0 = a1, v1 = a1a2, . . . , vk = a1a2 . . . ak+1, . . .

where ai are letters in X . Then U = {u1, u2, . . . , uk, . . .}.
Let T = {vk| k ≥ 0}. If x ≡ vk(PL), then, in particular, xuk ≡ vkuk(SL).

Since vkuk = u ∈ L, we have xuk ≡ u(SL), i.e., rxuk = u iff ru = u. Hence
r = 1, xuk = u = vkuk and x = vk. Therefore every word in T is a class of PL.

Let x 6∈ T . If xw ∈ T , then xw = ui with u = viui and vixw = viui =
u. Since this is true for u in particular, vixu = u, x = 1 and x ∈ T – a
contradiction. It follows then that xw ∈ W (L), a class of SL. Hence x, y ∈ T
implies xw, yw ∈ W (L), i.e., xw ≡ yw(SL) for all w ∈ Xω and x ≡ y(PL).
Therefore T̄ = X∗\T is a class of PL.

5 Compatible quasi-orders and orders on Xω

Recall that a binary relation σ on a set S is called a quasi-order if it is reflexive
and transitive (see, for example [2]).

If L is an ω-language, the relation σ(L) defined by

u σ(L) v ⇔ Lu−1 ⊆ Lv−1

is a quasi-order on Xω that will be called the principal quasi-order associated
with the ω-language L.

If σ is a quasi-order on Xω, then σ is said to be compatible if u, v ∈ Xω,
x ∈ X∗ and uσv imply xuσxv.

In this section we show that all the compatible quasi-orders on Xω can be
obtained from the principal quasi-orders.
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Proposition 5.1 Let L ⊆ Xω be an ω-language. Then:
(i) The principal quasi-order σ(L) is compatible, i.e., u σ(L) v implies xu σ(L) xv
for all x ∈ X∗.
(ii) For every w ∈ W (L) and u ∈ Xω we have w σ(L) u.
(iii) If L is a quasi-separative ω-language, then σ(L) is a compatible partial
order on Xω\W (L).

Proof. (i) Let u σ(L) v and x ∈ X∗. We have to show that xu σ(L) xv, that
is, L(xu)−1 ⊆ L(xv)−1. Suppose first that Lu−1 6= ∅. If y ∈ L(xu)−1, then
yxu ∈ L, yx ∈ Lu−1 ⊆ Lv−1 which shows that yxv ∈ L and y ∈ L(xv)−1. This
implies L(xu)−1 ⊆ L(yu)−1, i.e., xu σ(L) xv.

Suppose now that Lu−1 = ∅, that is, u ∈ W (L). Since W (L) is a left ω-ideal,
xu ∈ W (L) and L(xu)−1 = ∅ ⊆ L(xv)−1. Therefore xu σ(L) xv.

(ii) If w ∈ W (L), then Lw−1 = ∅ ⊆ Lu−1, hence wσ(L)u.
(iii) By (i), σ(L) is a compatible quasi-order. Suppose u σ(L) v and v σ(L) u

with u, v 6∈ W (L). Then Lu−1 ⊆ Lv−1 and Lv−1 ⊆ Lu−1, hence Lu−1 =
Lv−1 6= ∅. Since L is quasi-separative, we have u = v and therefore σ(L) is
anti-symmetric on Xω\W (L). 2

Let X = {a, b} and let X∗ be listed under the lexicographic order:

X∗ = {a, b, a2, ab, ba, b2, · · ·}

Let u = aba2abbab2 · · · be the catenation of the words from the above listing.
Construct the sequence:

u1 = aba2abbab2 . . . , u2 = ba2abbab2 . . . , u3 = a2abbab2 . . . , . . .

Let L = {u1, u2,u3, . . .}. Then

Lu−1
1 = {1}, Lu−1

2 = {1, a}, Lu−1
3 = {1, a, ab}, . . .

Clearly the ω-language L is quasi-separative and Lu−1
i ⊂ Lu−1

i+1. Hence σ(L) is
a compatible partial order on Xω\W (L) = L:

u1 σ(L) u2 σ(L) u3 σ(L) · · ·σ(L) uiσ(L) ui+1 σ(L) · · ·

Let σ be a quasi-order on Xω. An upper section is a nonempty subset
S such that u ∈ S and u σ x implies x ∈ S. For every u ∈ Xω, the set
[u) = {x ∈ Xω|u σ x} is an upper section called the monogenic upper section
generated by u.

Lemma 5.1 If σ is a compatible quasi-order of Xω and if L = [u) is a mono-
genic upper section of σ, then σ ⊆ σ(L).

Proof. Suppose that r σ s and let x ∈ Lr−1. Then xr ∈ L and u σ xr. Since σ
is compatible, xr σ xs and u σ xs. Hence xs ∈ L, x ∈ Ls−1 and Lr−1 ⊆ Ls−1.
Therefore r σ(L) s and σ ⊆ σ(L). 2
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Proposition 5.2 (i) If Λ = {Li | i ∈ I} is a family of ω-languages, then the
relation σ(Λ) defined by

σ(Λ) =
⋂

i∈I

σ(Li)

is a compatible quasi-order on Xω.
(ii) If σ is a compatible quasi-order on Xω, then there exists a family of

ω-languages Λ = {Li | i ∈ I} such that σ = σ(Λ).

Proof. (i) Immediate because the intersection of compatible partial orders is a
compatible partial order.

(ii) Take for the family Λ = {Li | i ∈ I} the set of all monogenic upper
sections Li of σ. We will show that σ = σ(Λ). First, by Lemma 5.1, we have
σ ⊆

⋂
i∈I σ(Li) = σ(Λ). Suppose that σ 6= σ(Λ). Then there exist r, s ∈ Xω

such that rσ(Λ)s and r not in relation σ with s. If K = {x ∈ X∗ | rσ x} is
the monogenic section generated by r, then r ∈ K and 1 ∈ Kr−1. Since K ∈ Λ,
then r σ(K) s and Kr−1 ⊆ Ks−1. Consequently, 1 ∈ Ks−1, s ∈ K and r σ s,
a contradiction. Therefore σ = σ(Λ). 2

A family Λ = {Li | i ∈ I} of ω-languages Li ⊆ Xω is said to be strong if

Liu
−1 = Liv

−1 ∀i ∈ I ⇒ u = v

Proposition 5.3 (i) If Λ = {Li | i ∈ I} is a strong family of ω-languages, then
the relation σ(Λ) defined by

σ(Λ) =
⋂

i∈I

σ(Li)

is a compatible partial order on Xω.
(ii) If σ is a compatible partial order on Xω, then there exists a strong family

of ω-languages Λ = {Li | i ∈ I} such that σ = σ(Λ).

Proof. (i) By Proposition 5.2, σ(Λ) is a compatible quasi-order. Since the family
Λ is strong, this implies that the quasi-order σ(Λ) is antisymmetic and hence a
compatible partial order.

(ii) As in the proof of the preceding proposition, take for the family Λ =
{Li | i ∈ I} the set of all monogenic upper sections Li of σ. Then we have
σ = σ(Λ). What is left to show is that the family Λ is strong.

Suppose that Λ is not strong. Then there exist u, v ∈ Xω, u 6= v, such
that Liu

−1 = Liv
−1 for all the monogenic upper sections Li of σ. Let U = [u)

and V = [v) be the monogenic sections of u, respectively v. Since 1 ∈ Uu−1,
1 ∈ Uv−1, v = 1.v ∈ U and u σ v. Using the same argument, it can be shown
that v σ u. Since σ is a partial order, this implies u = v, a contradiction. 2
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If L is a separative ω-language, then the relation σ(L) defined by u σ(L) v ⇔
Lu−1 ⊆ Lv−1 is an order relation on Xω that will be called the principal order
associated with L. It is easy to see that this order is the identity iff Lu−1 ⊆ Lv−1

implies u = v.

Proposition 5.4 Let L ⊆ Xw be a separative ω-language. Then the principlal
order σ(L) is compatible.

Proof. Let u σ(L) v and x ∈ X∗. Since L is separative, then L is ω-dense and
hence L(xu)−1 6= ∅. Let y ∈ L(xu)−1. This implies yux ∈ L, yx ⊆ Lu−1 =
Lv−1, yxv ∈ L and y ∈ L(xv)−1. Therefore L(xu)−1 ⊆ L(xv)−1. Similarly
L(xv)−1 ⊆ L(xu)−1. Hence L(xu)−1 = L(xv)−1 and xu σ(L) xv. 2
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comments which have been incorporated in Introduction and Proposition 2.2.
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