Omega-syntactic congruences^{*}

Lila Kari and Gabriel Thierrin Department of Mathematics University of Western Ontario London, Ontario, N6A 5B7 Canada

Abstract

An ω -language over a finite alphabet X is a set of infinite sequences of letters of X. Previously studied syntactic equivalence relations defined by ω -languages have mainly been relations on X^* . In this paper the emphasis is put on relations in X^{ω} , by associating to an ω -language L a congruence on X^{ω} , called the ω -syntactic congruence of L. Properties of this congruence and notions induced by it, such as ω -residue, ω -density, and separativeness are defined and investigated. Finally, a congruence on X^* related to the ω -syntactic congruence and quasi-orders on X^{ω} induced by an ω -language are studied.

Keywords: ω -syntactic congruence, ω -language, dense language, disjunctive language, residue, syntactic monoid.

1 Introduction

Various types of congruences on X^* have been introduced in connection with ω -words and ω -languages. The usual equivalence relations induced by an ω -language L on X^* are R_L and P_L , defined by (see, for example, [6]):

$$w \equiv v(R_L) \Leftrightarrow (\forall y \in X^{\omega}, wy \in L \text{ iff } vy \in L)$$
$$w \equiv v(P_L) \Leftrightarrow (\forall x \in X^*, y \in X^{\omega}, xwy \in L \text{ iff } xvy \in L).$$

Both R_L and P_L are equivalence relations on X^* which coincide with the Nerode and syntactic equivalence if L is a language over X^* . One easily proves that R_L is a right congruence and that P_L is a congruence. The monoid $\operatorname{Syn}(L) = X^*/P_L$ is called the *syntactic monoid* of L.

^{*}This research was supported by Grant OGP0007877 of the Natural Sciences and Engineering Research Council of Canada

An ω -language L is said to be disjunctive or right disjunctive if the corresponding relation P_L or R_L is the equality. It is dense if for every $u \in X^*$ there exist $x \in X^*$, $y \in X^{\omega}$ such that $xuy \in L$. Obviously, if an ω -language is disjunctive, it is dense. If the index of P_L is finite, then L is said to be μ -regular. (μ -regular ω -languages are sometimes referred to as finite-state ω -languages; see, for example, [7]) Remark that the index of P_L is finite if and only if the index of R_L is finite.

Disjunctive and right-disjunctive ω -languages and their properties have been studied in [4]. Syntactic monoids of ω -languages and conditions under which they are trivial have been investigated in [5]. In [6] it is shown that every finitely generated monoid is isomorphic with the syntactic monoid of an ω -language.

The congruences that have been previously defined for ω -languages are mainly congruences on X^* (see [1], [7], [9], [10]) and consequently all the notions related to these congruences mainly refer to the set X^* . However, it is possible to define congruences on X^{ω} , in particular a congruence on X^{ω} induced by an ω -language.

The ω -syntactic congruence associated with an ω -language $L \subseteq X^{\omega}$ will be denoted by S_L . Connected with the ω -syntactic congruence S_L , one can define the notions of ω -residue, ω -density and separativeness, which are the counterparts in X^{ω} of the classical notions of residue, density and disjunctivity. The equivalence of the finitness of R_L to the finiteness of S_L implies that μ regularity is also characterized by the finitness of S_L .

This paper studies the ω -syntactic congruence, its properties and related topics. Moreover, a *quasi-order* on X^{ω} is introduced and its relations with separative ω -languages and other related notions are investigated.

2 Omega-syntactic congruences

An alphabet X is a finite nonempty set. X^* is the free monoid generated by it under the catenation operation. The elements of X^* are words; in particular, 1 is the *empty word*, and $X^+ = X^* \setminus \{1\}$. X^{ω} is the set of ω -words, that is, of infinite sequences over X. The length of a word $w \in X^*$ will be denoted by |w|and the cardinality of a set X by card(X). The catenation of two words u, vwill be denoted either by uv or by u.v.

Let M be a monoid with identity 1. An operand over M (see, for example [3]) is a nonempty set T such that:

– with every pair $x \in M, u \in T$ is associated an element $xu \in T$ called the product of x and u;

 $-(xy)u = x(yu) \ \forall x, y \in M, u \in T;$

 $-1.u = u \ \forall u \in T.$

A nonempty subset T' of T such that $u \in T'$ implies $xu \in T'$, $\forall x \in M$, is called a suboperand of T over M and T' itself is an operand over M.

For example, if X^* and X^{ω} are respectively the set of words and the set of ω -words over X, then X^{ω} is an operand over X^* .

An equivalence relation ρ over X^{ω} is said to be *compatible* if

$$r \equiv s(\rho) \Rightarrow xr \equiv xs(\rho) \quad \forall x \in X^*$$

A compatible equivalence relation will also be called simply a *congruence*.

Remark. Let ρ be a congruence over X^{ω} and let $T = \{[u] \mid u \in X^{\omega}\}$ be the set of all the classes of ρ ([u] denotes the class containing u). Define the product of $x \in X^*$ and [u] by x[u] = [xu]. Since ρ is a congruence, it is easy to see that this product is well defined (i.e. it does not depend on the choice of representatives for a given class). It follows then that T is an operand over X^* , called the quotient-operand modulo ρ .

Definition 2.1 An ω -language L defines on X^{ω} a binary relation S_L by:

 $r \equiv s \ (S_L) \quad iff \ (xr \in L \ \Leftrightarrow xs \in L), x \in X^*, r, s \in X^{\omega}$

i.e. $Lr^{-1} = Ls^{-1}$, where $Lr^{-1} = \{x \in X^* \mid xr \in L\}$.

The relation S_L is a congruence, i.e., a compatible equivalence relation, and will be called in the sequel the ω -syntactic congruence of L (see [10] for a similar notion).

An ω -language L is called (see [5])

- a left ω -ideal if $X^*L \subseteq L$ (i.e. if L is an X^* -subset);

– suffix closed or simply suf-closed if $X^{*[-1]}L \subseteq L$, i.e., if $xu \in L$ implies $u \in L$.

- absolutely closed if $L = X^*L'$ for a suf-closed ω -language L'.

For example, the ω -language $L = X^* a^{\omega}$ over $X = \{a, b\}$ is a left ω -ideal and it is suffix closed. The ω -language a^{ω} is suf-closed and hence L is absolutely closed. Remark that an absolutely closed ω -language is always a left ω -ideal.

The ω -language $W(L) = \{ u \in X^{\omega} | Lu^{-1} = \emptyset \}$ is called the ω - residue of $L \subseteq X^{\omega}$.

Proposition 2.1 Let L be an ω -language. The ω -syntactic congruence of L has the following properties:

(i) L is a union of classes of S_L ;

(ii) If R is a congruence and if L is a union of classes of R, then $R \subseteq S_L$.

(iii) If nonempty, the ω -residue W(L) is a class of S_L and a left ω -ideal.

Proof. (i) Let $u \in L$ and suppose that $u \equiv v$ (S_L). Since $1 \in Lu^{-1} = Lv^{-1}$, the word v = 1.v belongs to L.

(ii) Suppose that $u \equiv v$ (R). If $x \in Lu^{-1}$, then $xu \in L$. From the compatibility of R it follows that $xu \equiv xv$ (R). The facts that L is a union of classes of R and $xu \in L$, imply that $xv \in L$, $x \in Lv^{-1}$. Consequently, $Lu^{-1} \subseteq Lv^{-1}$. Similarly one can prove that $Lv^{-1} \subseteq Lu^{-1}$. Therefore, $u \equiv v$ (S_L) which implies $R \subseteq S_L$.

(iii) Immediate because $u \in W(L)$ if and only if $Lu^{-1} = \emptyset$. \Box

Corollary 2.1 If T is a class of a congruence R over X^{ω} , then $R \subseteq S_T$.

Proof. This is a special case of (ii). \Box

Given an ω -language L, the *index* of R_L (respectively S_L) is the cardinality of the set of classes of R_L (respectively S_L).

Recall that an ω -language L is called μ -regular if the index of R_L is finite. The next result shows that the μ -regularity of an ω -language can be characterized either by the finiteness of the index of R_L in X^* or by the finiteness of S_L in X^{ω} .

Proposition 2.2 An ω -language $L \subseteq X^{\omega}$ is μ -regular if and only if the index of S_L is finite.

Proof. If the ω -language $L \subseteq X^{\omega}$ is μ -regular then the index of R_L is finite and therefore the set $\{w^{-1}L | w \in X^*\}$ is finite. Remark that $Lu^{-1} = \bigcup_{w \in Lu^{-1}} [w]_{R_L}$. Indeed, if $x \in [w]_{R_L}$ for some $w \in Lu^{-1}$ then $x \equiv w$ (R_L) and $wu \in L$. This implies that for all $v \in X^{\omega}$, $xv \in L$ iff $wv \in L$. In particular, $wu \in L$ implies $xu \in L$, that is, $x \in Lu^{-1}$. The other inclusion is obvious. If R_L is of finite index, the union is finite and there are only finitely many different unions, therefore the index of S_L is finite.

Conversely, note that $w^{-1}L = \bigcup_{u \in w^{-1}L} [u]_{S_L}$. Indeed if $v \in [u]_{S_L}$, $u \in w^{-1}L$ then $v \equiv u$ (S_L) and $wu \in L$. As $wu \in L$ iff $wv \in L$ we have $v \in w^{-1}L$. The other inclusion is obvious. If S_L is of finite index then the union is finite and there are only finitely many different unions. This further implies that the index of R_L is finite, i.e., L is μ -regular. \Box

Example 1 X^{ω} is μ -regular because the index of S_L is 1.

Example 2 $L = a^{\omega} = aaa \cdots aaa \cdots$ over $X = \{a, b\}$ is μ -regular. The classes of S_L are a^{ω} and the ω -residue $W(a^{\omega})$. Therefore the index of S_L is 2.

Example 3 Let $L = \{a^n b a^{\omega} | n \ge 1\}$ over $X = \{a, b\}$. The classes of S_L are L, $b a^{\omega}$, a^{ω} and W(L) and the index of S_L is then 4.

If X^* is ordered lexicographically, $X^* = \{a, b, a^2, ab, ba, b^2, \cdots\}$, then the disjunctive ω -word $u = aba^2abbab^2\cdots$ is not μ -regular because $S_{\{u\}}$ has an infinite index.

Proposition 2.3 Let L, L_1, L_2 be ω -languages in X^{ω} . Then:

(i) $S_L = S_{\bar{L}}$ where \bar{L} denotes the complement of L in X^{ω} ; (ii) $S_{L_1} \cap S_{L_2} \subseteq S_{L_1 \cup L_2}$; (iii) $S_{L_1} \cap S_{L_2} \subseteq S_{L_1 \cap L_2}$. (iv) If $T \subseteq X^*$ and $L, T \neq \emptyset$, then $S_L \subseteq S_{T^{-1}L}$ where $T^{-1}L = \{u \in X^{\omega} \mid \exists t \in T, tu \in L\}$.

Proof. (i) Immediate.

(ii) Let $u \equiv v$ $(S_{L_1} \cap S_{L_2})$, that is, $L_1 u^{-1} = L_1 v^{-1}$ and $L_2 u^{-1} = L_2 v^{-1}$. If $xu \in L_1 \cup L_2$, then $xu \in L_1$ or $xu \in L_2$, hence $xv \in L_1$ or $xv \in L_2$. Therefore $xv \in L_1 \cup L_2$, that is, $(L_1 \cup L_2)u^{-1} \subseteq (L_1 \cup L_2)v^{-1}$. By symmetry $(L_1 \cup L_2)v^{-1} \subseteq (L_1 \cup L_2)u^{-1}$ which implies $u \equiv v$ $(S_{L_1 \cup L_2})$.

(iii) By (i) and (ii), we have:

$$S_{L_1} \cap S_{L_2} = S_{\bar{L}_1} \cap S_{\bar{L}_2} \subseteq S_{\bar{L}_1 \cup \bar{L}_2} = S_{L_1 \cap L_2}.$$

(iv) Suppose $u \equiv v$ (S_L), that is, $Lu^{-1} = Lv^{-1}$. If $x \in T^{-1}Lu^{-1}$, then $xu \in T^{-1}L$ and $txu \in L$ for some $t \in T$. Hence $tx \in Lu^{-1} = Lv^{-1}$, $txv \in L$ and $xv \in T^{-1}L$. Therefore $x \in T^{-1}Lv^{-1}$ which shows that $T^{-1}Lu^{-1} \subseteq T^{-1}Lv^{-1}$. By symmetry, the converse inclusion also holds. Hence $u \equiv v$ ($S_{T^{-1}L}$). \Box

The following proposition shows that all the congruences over X^{ω} can be obtained from the ω -syntactic congruences.

Proposition 2.4 Every congruence R (over X^{ω}) is the intersection of ω -syntactic congruences. More precisely, there exists a family of ω -languages $\Phi(R) = \{L_i | i \in I\}$ such that:

$$R = \bigcap_{i \in I} S_{L_i}$$

Proof. We can choose, for example, the family $\Phi(R)$ to be the family of all the classes L_i of R. By Corollary 2.1, if L_i is a class of R, then $R \subseteq S_{L_i}$, hence $R \subseteq \bigcap_{i \in I} S_{L_i}$.

Suppose now that $u \equiv v$ $(\bigcap_{i \in I} S_{L_i})$ and let L_j be the class of R containing u. Then $u \equiv v$ (S_{L_j}) , that is, $L_j u^{-1} = L_j v^{-1}$. As $1.u = u \in L_j$, we have $1 \in L_j u^{-1} = L_j v^{-1}$ which implies $1.v = v \in L_j$. Because L_j is a class of R, it follows that $u \equiv v$ (R) therefore $\bigcap_{i \in I} S_{L_i} \subseteq R$. Consequently,

$$R = \bigcap_{i \in I} S_{L_i}. \quad \Box$$

Recall that (see [5]) an ω -language $L \subseteq X^{\omega}$ is absolutely closed if and only if the syntactic monoid of L, $\operatorname{Syn}(L)$ is trivial, that is, $\operatorname{card}(\operatorname{Syn}(L)) = 1$. This is equivalent to the fact that P_L is the universal relation, i.e. has a unique class. (Here $\operatorname{Syn}(L) = X^*/P_L$.)

Proposition 2.5 Let L be an absolutely closed ω -language, $L \neq X^{\omega}$. Then S_L has only two classes, L and the ω -residue W(L).

Proof. By a result of [5], the ω -language L is absolutely closed if and only if L and the complement \overline{L} of L are left ω -ideals.

Let $u \in L$. Then $Lu^{-1} = X^*$ and L is contained in a class of S_L . Since L is a union of classes of S_L , it follows that L is a class of S_L . The complement \overline{L} of L being a left ω -ideal is therefore contained in the ω -residue W(L). Since Land W(L) are classes of S_L , they are the only two classes of S_L . \Box

Proposition 2.5 does not hold anymore in case L is a suf-closed ω -language. For example, let $X = \{a, b\}$ and $L = \{a^{\omega}, b^{\omega}\}$. L is suf-closed but S_L has three classes: a^{ω}, b^{ω} and W(L).

In fact, there exist suf-closed ω -languages with the property that S_L has infinitely many classes.

Indeed, let $X = \{0, 1, 2, \dots, 9\}$ and let

$$u_{1} = 12345678910111213\cdots$$
$$u_{2} = 234567891011121314\cdots$$
$$\dots$$
$$u_{n} = n(n+1)(n+2)\cdots$$
$$\dots$$

Then L is suf-closed but S_L has infinitely many equivalence classes.

A nonempty ω -language L is called *suffix-free* (*outfix-free*) or simply *suf-free* (*out-free*) if $u, xu \in L$ (*yu*, $yxu \in L$) implies x = 1. An out-free ω -language is always suf-free.

For example, the ω -language $L = aba^2b^2 \cdots a^nb^n \cdots$ over $X = \{a, b\}$ is outfree.

Proposition 2.6 Let L be an ω -language. Then:

(i) If L is suf-free, L is a class of S_L .

(ii) If L is out-free, then every class T of S_L , $T \neq W(L)$, is a suf-free ω -language.

Proof. (i) If $u \in L$, then $Lu^{-1} = \{1\}$, hence L is contained in a class T of S_L . If $v \in T$, then $Lv^{-1} = \{1\}$ and therefore $v = 1.v \in L$. Consequently, L = T.

(ii) Suppose that u and xu = v are words in T. Since $T \neq W(L)$, there exists $y \in X^*$ such that $yu \in L$. From $u \equiv v(S_L)$ it follows that $yu \equiv yv(S_L)$. Since $yu \in L$, $yv = yxu \in L$. On the other hand, the fact that L is out-free implies that x = 1, that is T is suf-free. \Box

3 Omega-dense and separative ω -languages

An ω -language $L \subseteq X^{\omega}$ is called *dense* iff for any word $x \in X^*$, there exist $u \in X^*$ and $y \in X^{\omega}$ such that $uxy \in L$. In other words, L is called dense iff any word of X^* occurs as a subword of a word of L.

One can generalize the notion of density from X^* to X^{ω} in the following natural fashion. An ω -language L will be called ω -dense if any infinite word occurs as a subword of a word in L. Formally,

Definition 3.1 An ω -language L is called ω -dense if its ω -residue $W(L) = \emptyset$.

If $Suf(L) = \{v \in X^{\omega} | \exists x \in X^*, \exists u \in L, u = xv\}$ is the set of all suffixes of words in L, then it is immediate that L is ω -dense iff $Suf(L) = X^{\omega}$.

Let $X = \{a, b, \dots\}$. Then X^{ω} , aX^{ω} and bX^{ω} are examples of ω -dense ω -languages. Generally if L is ω -dense, then AL is ω -dense for all $A \subseteq X^*, A \neq \emptyset$.

Remark that, if $\{x_1, x_2, \dots\}$ is any ordering of X^+ , the ω -word $u = x_1 x_2 \dots$ obtained by catenating the ordered sequence $\{x_1, x_2, \dots\}$ is disjunctive, hence dense. However, the following proposition shows that u is not ω -dense.

Proposition 3.1 Every ω -dense ω -language L over an alphabet X with at least two letters, is infinite.

Proof. Let $X = \{a, b, \dots\}$ be an alphabet of cardinality greater than 1 and assume, by reductio ad absurdum, that the ω -dense ω -language $L = \{u_1, u_2, \dots, u_n\}$ over X is finite.

Consider the finite language $\{v_i | 1 \le i \le n+1\}$ where $v_i = (a^i b^i)^{\omega}$. Since L is ω -dense, there exist words $x_1, x_2, \dots, x_n, x_{n+1}$ such that

$$x_1v_1 \in L, x_2v_2 \in L, \dots, x_nv_n \in L, x_{n+1}v_{n+1} \in L.$$

As L contains only n distinct words, the equality $u_i = x_i v_i = x_j v_j$ will hold for some $i \neq j$, that is,

$$u_i = x_i (a^i b^i)^{\omega} = x_j (a^j b^j)^{\omega}, i \neq j.$$

This implies a = b – a contradiction. Consequently, our assumption that L is finite was false.

Recall (see, for example, [8]) that a subset P of X^* is called *dense* (in X^*) if for every $w \in X^*$ there exist words $x, y \in X^*$ such that xwy belongs to P.

For $L \subseteq X^{\omega}$, let $Prf(L) = \{x \in X^* | \exists u \in L, u = xv\}$ be the set of all prefixes of the words in L. The next result gives a connection between the ω -density of an ω -language and the density of the set if its prefixes.

Proposition 3.2 If L is ω -dense, then Prf(L) is dense (in X^*).

Proof. Let w be a word in X^* and consider the ω -word w^{ω} . As L is an ω -dense ω -language, there exists $x \in X^*$ such that $xw^{\omega} \in L$. This implies, for example, that xww is in $\Pr(L)$. This means that we have found the words $x, w \in X^*$ with the property $xww \in \Pr(L)$, which assures that $\Pr(L)$ is dense. \Box

The notion of density in X^* is closely connected with the notion of disjunctivity. An ω -language is disjunctive if its congruence P_L is the equality. A disjunctive ω -language is dense, but the converse does not hold. An analogous of disjunctivity when considering relations over X^{ω} is the separativeness.

An ω -language L is *separative* if its ω -syntactic congruence separates all the words of X^{ω} : every word of X^{ω} belongs to a different equivalence class.

Definition 3.2 An ω -language L is called

(i) separative iff $Lu^{-1} = Lv^{-1}$ implies u = v.

(ii) quasi-separative iff $Lu^{-1} = Lv^{-1} \neq \emptyset$ implies u = v.

In other words, L is separative if S_L is the identity and quasi-separative if S_L is the identity outside the ω -residue W(L).

It is easy to see that L is separative iff for every pair $u, v \in X^{\omega}$, $u \neq v$, there exists $x \in X^*$ such that $xu \in L$, $xv \notin L$ or vice versa. Simple examples seem to be difficult to find. The following proposition shows how to obtain separative languages from special types of partitions of Y^+ , where $Y \subset X$ and $|X| \geq 2$.

Remark that if |X| = 1 then $|X^{\omega}| = 1$ and the language X^{ω} is trivially separative.

Proposition 3.3 Let X be a finite alphabet with $|X| \ge 2$, let $a \in X$ and let $Y = X \setminus \{a\}$. Furthermore let $\Pi = \{Y_0, Y_1, \ldots, Y_n, \ldots\}$ be a partition of Y^+ with infinitely many classes, all of them infinite. Then there exists a separative language asociated to this partition.

Proof. For $n \ge 0$, let

$$T_n = \{ u \in X^{\omega} | u = a^n w, w \notin a X^{\omega} \}.$$

Let **c** be the cardinality of the set of the real numbers. The set X^{ω} and the sets $T_n, n \ge 0$, have the same cardinality **c**. Consequently, these sets can be listed using the same set I of indices where I has the cardinality **c**:

$$T_n = \{u_{n_i} \in X^{\omega} | i \in I\}, n \ge 0.$$

Each class Y_n of the partition Π contains infinitely many words of Y^+ . For each n, let P_n be the set of all nonempty subsets of Y_n . Clearly the cardinality of each P_n is **c**. This implies in particular that the elements of P_n can be listed using the same index set I:

$$P_n = \{S_{n_i} | i \in I, S_{n_i} \subseteq Y_n, S_{n_i} \neq \emptyset\}$$

Furthermore, $S_{n_i} \cap S_{m_j} = \emptyset$ for $n \neq m$.

The ω -language L is defined in the following way.

For each $n \ge 0$ and $i \in I$, let $L_{n_i} = S_{n_i} a u_{n_i}$. Then:

$$L = \bigcup_{n \ge 0, i \in I} L_{n_i} \cup a^{\omega}$$

Let us show that L is separative, that is, $Lu^{-1} \neq Lv^{-1}$ for all $u, v \in X^{\omega}, u \neq v$.. We have to consider the following cases.

Case 1. $u \in T_m$, $v \in T_n$ with $m \neq n$. Then $u = u_{m_i}$, $v = u_{n_j}$ with $i, j \in I$ and $u = a^m b \alpha$, $v = a^n c \beta$ where $m, n \geq 0$, $b, c \in Y$ and $\alpha, \beta \in X^{\omega}$.

Without loss of generality, we can assume that m < n. If $x \in S_{m_i}$, then $xau = xau_{m_i} \in L_{m_i} \subseteq L$. By the definition of the sets S_{r_k} , $x \in S_{m_i}$ implies that $x \notin S_{r_k}$ for $r \neq m$. Therefore $xav = xau_{n_i} \notin L$ and $Lu^{-1} \neq Lv^{-1}$.

Case 2. $u \in T_n, v \in T_n$ and $u = u_{n_i}, v = u_{n_j}$. Since $u \neq v$, we must have $i \neq j$. Furthermore $u = a^n b\alpha$, $v = a^n c\beta$, $b, c \in Y$, $\alpha, \beta \in X^{\omega}$. Since $i \neq j$, then we have $S_{n_i} \neq S_{n_j}$. Hence there exists $x \in S_{n_i}, x \notin S_{n_j}$ or vice versa. Suppose the first case. Then $xau \in L_{n_i} \subseteq L$, but $xav \notin L_{n_j}$. Since $v = u_{n_j}$, then, from the definition of the ω -languages L_{r_s} and L, we have $xau_{n_j} \in L$ iff $xau_{n_j} \in L_{n_j}$ iff $x \in S_{n_j}$, in contradiction with $x \notin S_{n_j}$.

Case 3. $u \in T_n$, $v = a^{\omega}$. Suppose $Lu^{-1} = Lv^{-1}$. Clearly $a^k \in Lv^{-1}$ for $k \ge 0$. Since $u = u_{n_i} = a^n b\alpha$, then $a^k a a^n b\alpha \in L$ for $k \ge 0$, a contradiction because $xaa^nb\alpha \in L$ implies $x \in Y^+$ and $a^k \notin Y^+$. \Box

Proposition 3.4 Every separative ω -language L is ω -dense.

Proof. If L is not ω -dense, then its ω -residue W(L) is non empty. Furthermore, W(L) is infinite and W(L) is a class of the congruence S_L . Since L is separative, S_L is the identity, a contradiction. \Box

While it is difficult to find simple examples of separative ω -languages, this is no more the case for quasi-separative ω -languages as shown in the following proposition.

Proposition 3.5 Every ω -word u is quasi-separative.

Proof. Let u be an ω -word and let $r \equiv s$ (S_u) with $r, s \notin W(u)$. Then there exist $x, y \in X^*$ such that u = xr = ys. The equality $ur^{-1} = us^{-1}$ implies $x \in us^{-1}$ and u = xr = ys = xs. This further implies r = s, therefore u is quasi-separative. \Box

Let $L \subseteq X^{\omega}$ be an ω -language with a non empty ω -residue W(L). We can construct a congruence ρ on X^{ω} in the following way: W(L) is a class ρ and all the other classes of ρ are the singletons taken from the complement of W(L). By analogy with semigroups, such a congruence will be called the *Rees congruence* associated with the ω -residue of L (see [3]).

Proposition 3.6 Let L be an ω -language such that $W(L) \neq \emptyset$. Then

(i) L is quasi-separative $\Leftrightarrow S_L$ is the Rees congruence associated with W(L). (ii) L is quasi-separative and $\bar{L} = W(L) \Leftrightarrow S_L$ is the identity on L and

 $\overline{L} = X^{\omega} \backslash L$ is a class of S_L .

Proof. (i) " \Rightarrow " Since $u \in W(L)$ if and only if $Lu^{-1} = \emptyset$, it is clear that W(L) is a class of S_L . Since S_L is the identity on $X^{\omega} \setminus W(L)$, it follows that S_L is the Rees congruence associated with W(L).

" \Leftarrow " Since the Rees congruence is the identity outside the ω -residue, S_L is the identity on $X^{\omega} \setminus W(L)$, that is, L is quasi-separative.

(ii) " \Rightarrow " If $u, v \in L$, we have $Lu^{-1} = Lv^{-1} = \emptyset$, that is, $u \equiv v(S_L)$. If $u, v \in L, u \neq v$, then $Lu^{-1} \neq \emptyset$, $Lv^{-1} \neq \emptyset$. Since L is quasi-separative, we have $Lu^{-1} \neq Lv^{-1}$, i.e., u is not equivalent to v modulo S_L . Therefore S_L is the identity on L and \overline{L} is a class of S_L .

"⇐" Suppose that $Lu^{-1} = Lv^{-1} \neq \emptyset$. This implies there exists $x \in X^*$ such that $xu, xv \in L$. Since $u \equiv v(S_L)$ and S_L is compatible, $xu \equiv xv(S_L)$. Since S_L is the identity on L and $xu, xv \in L$, then xu = xv therefore u = v. This means L is separative. It is easy to see that $W(L) = \overline{L}$. \Box

Proposition 3.7 Let L be a μ -regular ω -language. If L is quasi-separative, then L is finite.

Proof. The ω -language L is a union of classes of S_L (Proposition 2.1) Since L is μ -regular, the index of S_L is finite(Proposition 2.2). If L is not finite, then there exists a class T of S_L such that $T \subseteq L$ and T infinite. If $u, v \in T$ with $u \neq v$, then $Lu^{-1} = Lv^{-1} \neq \emptyset$, a contradiction because L is separative. Therefore L is finite. \Box

4 Congruences S_L and P_L

In this section, we consider a connection between the ω -syntactic congruence S_L on X^{ω} and the congruence P_L on X^* associated with an ω -language L.

With every congruence ρ on X^{ω} , one can associate a congruence $s(\rho)$ on X^* defined in the following way:

$$c \ s(\rho) \ d \iff cu \equiv du \ (\rho) \ \forall u \in X^{\omega}.$$

Proposition 4.1 The relation $s(\rho)$ is a congruence on X^* .

Proof. It is immediate that $s(\rho)$ is an equivalence relation. Since ρ is compatible, it follows then that $s(\rho)$ is left compatible. Let $x \in X^*$. Since $xu \in X^{\omega}$, from $cu \equiv du \ (\rho)$ for all u, it follows that $cxu \equiv dxu \ (\rho)$ (take for u the word xu). Hence $cxu \equiv dxu \ (\rho)$ for all $u \in X^{\omega}$ therefore $cx \equiv dx \ (s(\rho))$, which implies that $s(\rho)$ is right compatible. Consequently, $s(\rho)$ is a congruence of X^* . \Box

Remark. If ρ is the universal relation on X^{ω} , then $s(\rho)$ is also the universal relation on X^* . If ρ is the identity on X^{ω} , then $s(\rho)$ is the identity on X^* .

The next proposition shows how the congruence P_L of L is related to the ω -syntactic congruence S_L .

Proposition 4.2 If $L \subseteq X^{\omega}$, then $P_L = s(S_L)$.

Proof. Suppose that $c \equiv d$ (P_L) , $c, d \in X^*$. This means that, for every $x \in X^*$ and $u \in X^{\omega}$, $xcu \in L \Leftrightarrow xdu \in L$. This further implies $cu \equiv du$ (S_L) for every $u \in X^{\omega}$ and hence $c \ s(S_L) \ d$. Therefore $P_L \subseteq s(S_L)$.

Suppose now that $c \ s(S_L) \ d$, i.e. $cu \equiv du \ (S_L) \ \forall u \in X^{\omega}$. This implies that for every $x \in X^*$, $xcu \in L \Leftrightarrow xdu \in L$, i.e. $c \equiv d \ (P_L)$, and $s(S_L) \subseteq P_L$.

Therefore $P_L = s(S_L)$. \Box

We give now a few examples of the connection between S_L and P_L .

Example 1 Let $L = a^{\omega}$ over $X = \{a, b\}$. The classes of S_L are a^{ω} and $W(a^{\omega})$. The classes of P_L are a^* and $\{xby|x, y \in X^*\}$. The syntactic monoid of L is isomorphic to the monoid consisting of only 1 and 0.

Example 2 Let $L = \{a^{\omega}, b^{\omega}\}$ over $X = \{a, b\}$. Then the classes of S_L are a^{ω} , b^{ω} and W(L). The classes of P_L are $\{1\}, a^+, b^+$ and $X^+ \setminus \{a^+, b^+\}$.

Example 3 If $L = \{a^n b a^\omega | n \ge 1\}$ over $X = \{a, b\}$, then the classes of S_L are $L, a^\omega, ba^\omega, W(L)$. The classes of P_L are $\{1\}, a^+, \{b\}, \{ab\}, bX^+ \cup X^* b^2 X^*$.

Example 4 Let $L = \{u\}$ be an ω -word. By Proposition 3.5, u is quasiseparative and the classes of S_u are the ω -residue W(L) (if not empty) and the singletons consisting of the ω -words in $U = X^{\omega} \setminus W(L)$. Let

$$u = a_1 a_2 \dots a_k \dots, \quad u_1 = u, u_2 = a_2 \dots a_k \dots, \quad u_k = a_k a_{k+1} \dots$$

 $v_0 = a_1, v_1 = a_1 a_2, \dots, v_k = a_1 a_2 \dots a_{k+1}, \dots$

where a_i are letters in X. Then $U = \{u_1, u_2, \ldots, u_k, \ldots\}$.

Let $T = \{v_k | k \ge 0\}$. If $x \equiv v_k(P_L)$, then, in particular, $xu_k \equiv v_k u_k(S_L)$. Since $v_k u_k = u \in L$, we have $xu_k \equiv u(S_L)$, i.e., $rxu_k = u$ iff ru = u. Hence r = 1, $xu_k = u = v_k u_k$ and $x = v_k$. Therefore every word in T is a class of P_L .

Let $x \notin T$. If $xw \in T$, then $xw = u_i$ with $u = v_iu_i$ and $v_ixw = v_iu_i = u$. Since this is true for u in particular, $v_ixu = u$, x = 1 and $x \in T$ – a contradiction. It follows then that $xw \in W(L)$, a class of S_L . Hence $x, y \in T$ implies $xw, yw \in W(L)$, i.e., $xw \equiv yw(S_L)$ for all $w \in X^{\omega}$ and $x \equiv y(P_L)$. Therefore $\overline{T} = X^* \setminus T$ is a class of P_L .

5 Compatible quasi-orders and orders on X^{ω}

Recall that a binary relation σ on a set S is called a *quasi-order* if it is reflexive and transitive (see, for example [2]).

If L is an ω -language, the relation $\sigma(L)$ defined by

$$u \ \sigma(L) \ v \ \Leftrightarrow \ Lu^{-1} \subseteq Lv^{-1}$$

is a quasi-order on X^{ω} that will be called the *principal quasi-order* associated with the ω -language L.

If σ is a quasi-order on X^{ω} , then σ is said to be *compatible* if $u, v \in X^{\omega}$, $x \in X^*$ and $u\sigma v$ imply $xu\sigma xv$.

In this section we show that all the compatible quasi-orders on X^{ω} can be obtained from the principal quasi-orders.

Proposition 5.1 Let $L \subseteq X^{\omega}$ be an ω -language. Then:

(i) The principal quasi-order $\sigma(L)$ is compatible, i.e., $u \sigma(L) v$ implies $xu \sigma(L) xv$ for all $x \in X^*$.

(ii) For every $w \in W(L)$ and $u \in X^{\omega}$ we have $w \sigma(L) u$.

(iii) If L is a quasi-separative ω -language, then $\sigma(L)$ is a compatible partial order on $X^{\omega} \setminus W(L)$.

Proof. (i) Let $u \sigma(L) v$ and $x \in X^*$. We have to show that $xu \sigma(L) xv$, that is, $L(xu)^{-1} \subseteq L(xv)^{-1}$. Suppose first that $Lu^{-1} \neq \emptyset$. If $y \in L(xu)^{-1}$, then $yxu \in L, yx \in Lu^{-1} \subseteq Lv^{-1}$ which shows that $yxv \in L$ and $y \in L(xv)^{-1}$. This implies $L(xu)^{-1} \subseteq L(yu)^{-1}$, i.e., $xu \sigma(L) xv$.

Suppose now that $Lu^{-1} = \emptyset$, that is, $u \in W(L)$. Since W(L) is a left ω -ideal, $xu \in W(L)$ and $L(xu)^{-1} = \emptyset \subseteq L(xv)^{-1}$. Therefore $xu \ \sigma(L) \ xv$.

(ii) If $w \in W(L)$, then $Lw^{-1} = \emptyset \subseteq Lu^{-1}$, hence $w\sigma(L)u$.

(*iii*) By (*i*), $\sigma(L)$ is a compatible quasi-order. Suppose $u \sigma(L) v$ and $v \sigma(L) u$ with $u, v \notin W(L)$. Then $Lu^{-1} \subseteq Lv^{-1}$ and $Lv^{-1} \subseteq Lu^{-1}$, hence $Lu^{-1} = Lv^{-1} \neq \emptyset$. Since L is quasi-separative, we have u = v and therefore $\sigma(L)$ is anti-symmetric on $X^{\omega} \setminus W(L)$. \Box

Let $X = \{a, b\}$ and let X^* be listed under the lexicographic order:

$$X^* = \{a, b, a^2, ab, ba, b^2, \cdots\}$$

Let $u = aba^2 abbab^2 \cdots$ be the catenation of the words from the above listing. Construct the sequence:

$$u_1 = aba^2 abbab^2 \dots$$
, $u_2 = ba^2 abbab^2 \dots$, $u_3 = a^2 abbab^2 \dots$, \dots

Let $L = \{u_1, u_2, u_3, \ldots\}$. Then

$$Lu_1^{-1} = \{1\}, \ Lu_2^{-1} = \{1, a\}, \ Lu_3^{-1} = \{1, a, ab\}, \dots$$

Clearly the ω -language L is quasi-separative and $Lu_i^{-1} \subset Lu_{i+1}^{-1}$. Hence $\sigma(L)$ is a compatible partial order on $X^{\omega} \setminus W(L) = L$:

$$u_1 \sigma(L) u_2 \sigma(L) u_3 \sigma(L) \cdots \sigma(L) u_i \sigma(L) u_{i+1} \sigma(L) \cdots$$

Let σ be a quasi-order on X^{ω} . An *upper section* is a nonempty subset S such that $u \in S$ and $u \sigma x$ implies $x \in S$. For every $u \in X^{\omega}$, the set $[u) = \{x \in X^{\omega} | u \sigma x\}$ is an upper section called the *monogenic upper section* generated by u.

Lemma 5.1 If σ is a compatible quasi-order of X^{ω} and if L = [u) is a monogenic upper section of σ , then $\sigma \subseteq \sigma(L)$.

Proof. Suppose that $r \sigma s$ and let $x \in Lr^{-1}$. Then $xr \in L$ and $u \sigma xr$. Since σ is compatible, $xr \sigma xs$ and $u \sigma xs$. Hence $xs \in L$, $x \in Ls^{-1}$ and $Lr^{-1} \subseteq Ls^{-1}$. Therefore $r \sigma(L) s$ and $\sigma \subseteq \sigma(L)$. \Box

Proposition 5.2 (i) If $\Lambda = \{L_i \mid i \in I\}$ is a family of ω -languages, then the relation $\sigma(\Lambda)$ defined by

$$\sigma(\Lambda) = \bigcap_{i \in I} \sigma(L_i)$$

is a compatible quasi-order on X^{ω} .

(ii) If σ is a compatible quasi-order on X^{ω} , then there exists a family of ω -languages $\Lambda = \{L_i \mid i \in I\}$ such that $\sigma = \sigma(\Lambda)$.

Proof. (i) Immediate because the intersection of compatible partial orders is a compatible partial order.

(ii) Take for the family $\Lambda = \{L_i \mid i \in I\}$ the set of all monogenic upper sections L_i of σ . We will show that $\sigma = \sigma(\Lambda)$. First, by Lemma 5.1, we have $\sigma \subseteq \bigcap_{i \in I} \sigma(L_i) = \sigma(\Lambda)$. Suppose that $\sigma \neq \sigma(\Lambda)$. Then there exist $r, s \in X^{\omega}$ such that $r\sigma(\Lambda)s$ and r not in relation σ with s. If $K = \{x \in X^* \mid r\sigma x\}$ is the monogenic section generated by r, then $r \in K$ and $1 \in Kr^{-1}$. Since $K \in \Lambda$, then $r \sigma(K) s$ and $Kr^{-1} \subseteq Ks^{-1}$. Consequently, $1 \in Ks^{-1}$, $s \in K$ and $r \sigma s$, a contradiction. Therefore $\sigma = \sigma(\Lambda)$. \Box

A family $\Lambda = \{L_i \mid i \in I\}$ of ω -languages $L_i \subseteq X^{\omega}$ is said to be strong if

$$L_i u^{-1} = L_i v^{-1} \quad \forall i \in I \quad \Rightarrow \quad u = v$$

Proposition 5.3 (i) If $\Lambda = \{L_i \mid i \in I\}$ is a strong family of ω -languages, then the relation $\sigma(\Lambda)$ defined by

$$\sigma(\Lambda) = \bigcap_{i \in I} \sigma(L_i)$$

is a compatible partial order on X^{ω} .

(ii) If σ is a compatible partial order on X^{ω} , then there exists a strong family of ω -languages $\Lambda = \{L_i \mid i \in I\}$ such that $\sigma = \sigma(\Lambda)$.

Proof. (i) By Proposition 5.2, $\sigma(\Lambda)$ is a compatible quasi-order. Since the family Λ is strong, this implies that the quasi-order $\sigma(\Lambda)$ is antisymmetric and hence a compatible partial order.

(ii) As in the proof of the preceding proposition, take for the family $\Lambda = \{L_i \mid i \in I\}$ the set of all monogenic upper sections L_i of σ . Then we have $\sigma = \sigma(\Lambda)$. What is left to show is that the family Λ is strong.

Suppose that Λ is not strong. Then there exist $u, v \in X^{\omega}$, $u \neq v$, such that $L_i u^{-1} = L_i v^{-1}$ for all the monogenic upper sections L_i of σ . Let U = [u) and V = [v) be the monogenic sections of u, respectively v. Since $1 \in Uu^{-1}$, $1 \in Uv^{-1}$, $v = 1.v \in U$ and $u \sigma v$. Using the same argument, it can be shown that $v \sigma u$. Since σ is a partial order, this implies u = v, a contradiction. \Box

If L is a separative ω -language, then the relation $\sigma(L)$ defined by $u \sigma(L) v \Leftrightarrow Lu^{-1} \subseteq Lv^{-1}$ is an order relation on X^{ω} that will be called the *principal order* associated with L. It is easy to see that this order is the identity iff $Lu^{-1} \subseteq Lv^{-1}$ implies u = v.

Proposition 5.4 Let $L \subseteq X^w$ be a separative ω -language. Then the principlal order $\sigma(L)$ is compatible.

Proof. Let $u \sigma(L) v$ and $x \in X^*$. Since L is separative, then L is ω -dense and hence $L(xu)^{-1} \neq \emptyset$. Let $y \in L(xu)^{-1}$. This implies $yux \in L$, $yx \subseteq Lu^{-1} = Lv^{-1}$, $yxv \in L$ and $y \in L(xv)^{-1}$. Therefore $L(xu)^{-1} \subseteq L(xv)^{-1}$. Similarly $L(xv)^{-1} \subseteq L(xu)^{-1}$. Hence $L(xu)^{-1} = L(xv)^{-1}$ and $xu \sigma(L) xv$. \Box

Acknowledgements. We thank the anonymous referee for observations and comments which have been incorporated in Introduction and Proposition 2.2.

References

- A.Arnold, A syntactic congruence for rational ω-languages. Theoretical Computer Science, 39(1985), 333-335.
- [2] G.Birkhoff, Lattice Theory, Amer.Math.Soc.Coll.Publ. XXV, Third Edition, Providence (1967).
- [3] A.H. Clifford and G.B. Preston, *The algebraic theory of semigroups*, Mathematical Surveys, vol 1. and vol. 2, Amer. Math. Soc., Providence (1961, 1967).
- [4] H. Jürgensen, H.J. Shyr and G. Thierrin, Disjunctive ω-languages, J. Information Processing and Cybernetics, EIK 19(1983), 267-278.
- [5] H. Jürgensen and G. Thierrin, On ω-languages whose syntactic monoid is trivial, Intern. J. Comp. and Information Sciences 12(1983), 359-365.
- [6] H. Jürgensen and G. Thierrin, Which monoids are syntactic monoids of ωlanguages? J. Information Processing and Cybernetics, EIK 22(1986), 513 -526.
- [7] O.Maler, L.Staiger. On syntactic congruences for ω-languages. Proc.STACS 93, LNCS 665, Springer Verlag, Berlin, 1993, 586-594.
- [8] H.J.Shyr, Free monoids and languages, Lecture Notes, National Chung-Hsing University, Hon Min Book, Taichung, Taiwan (1991).
- [9] W.Thomas. Automata on infinite objects, In J.Van Leeuwen (Ed.), *Handbook of Theoretical Computer Science*, vol.B, Elsevier, Amsterdam, 1990, 133-191.
- [10] Th.Wilke, An Eilenberg theorem for ∞-languages. Proc.ICALP 91, LNCS 510, Springer Verlag, Berlin 1991, 588-599.