Omega-syntactic congruences*

Lila Kari and Gabriel Thierrin
Department of Mathematics
University of Western Ontario
London, Ontario, N6A 5B7
Canada

Abstract

An ω-language over a finite alphabet X is a set of infinite sequences of letters of X. Previously studied syntactic equivalence relations defined by ω-languages have mainly been relations on X^{*}. In this paper the emphasis is put on relations in X^{ω}, by associating to an ω-language L a congruence on X^{ω}, called the ω-syntactic congruence of L. Properties of this congruence and notions induced by it, such as ω-residue, ω-density, and separativeness are defined and investigated. Finally, a congruence on X^{*} related to the ω-syntactic congruence and quasi-orders on X^{ω} induced by an ω-language are studied.

Keywords: ω-syntactic congruence, ω-language, dense language, disjunctive language, residue, syntactic monoid.

1 Introduction

Various types of congruences on X^{*} have been introduced in connection with ω-words and ω-languages. The usual equivalence relations induced by an ω language L on X^{*} are R_{L} and P_{L}, defined by (see, for example, [6]):

$$
\begin{gathered}
w \equiv v\left(R_{L}\right) \Leftrightarrow\left(\forall y \in X^{\omega}, w y \in L \text { iff } v y \in L\right) \\
w \equiv v\left(P_{L}\right) \Leftrightarrow\left(\forall x \in X^{*}, y \in X^{\omega}, x w y \in L \text { iff } x v y \in L\right)
\end{gathered}
$$

Both R_{L} and P_{L} are equivalence relations on X^{*} which coincide with the Nerode and syntactic equivalence if L is a language over X^{*}. One easily proves that R_{L} is a right congruence and that P_{L} is a congruence. The monoid $\operatorname{Syn}(L)=X^{*} / P_{L}$ is called the syntactic monoid of L.

[^0]An ω-language L is said to be disjunctive or right disjunctive if the corresponding relation P_{L} or R_{L} is the equality. It is dense if for every $u \in X^{*}$ there exist $x \in X^{*}, y \in X^{\omega}$ such that $x u y \in L$. Obviously, if an ω-language is disjunctive, it is dense. If the index of P_{L} is finite, then L is said to be μ-regular. (μ-regular ω-languages are sometimes referred to as finite-state ω-languages; see, for example, [7]) Remark that the index of P_{L} is finite if and only if the index of R_{L} is finite.

Disjunctive and right-disjunctive ω-languages and their properties have been studied in [4]. Syntactic monoids of ω-languages and conditions under which they are trivial have been investigated in [5]. In [6] it is shown that every finitely generated monoid is isomorphic with the syntactic monoid of an ω-language.

The congruences that have been previously defined for ω-languages are mainly congruences on X^{*} (see [1], [7], [9], [10]) and consequently all the notions related to these congruences mainly refer to the set X^{*}. However, it is possible to define congruences on X^{ω}, in particular a congruence on X^{ω} induced by an ω-language.

The ω-syntactic congruence associated with an ω-language $L \subseteq X^{\omega}$ will be denoted by S_{L}. Connected with the ω-syntactic congruence S_{L}, one can define the notions of ω-residue, ω-density and separativeness, which are the counterparts in X^{ω} of the classical notions of residue, density and disjunctivity. The equivalence of the finitness of R_{L} to the finiteness of S_{L} implies that μ regularity is also characterized by the finitness of S_{L}.

This paper studies the ω-syntactic congruence, its properties and related topics. Moreover, a quasi-order on X^{ω} is introduced and its relations with separative ω-languages and other related notions are investigated.

2 Omega-syntactic congruences

An alphabet X is a finite nonempty set. X^{*} is the free monoid generated by it under the catenation operation. The elements of X^{*} are words; in particular, 1 is the empty word, and $X^{+}=X^{*} \backslash\{1\} . X^{\omega}$ is the set of ω-words, that is, of infinite sequences over X. The length of a word $w \in X^{*}$ will be denoted by $|w|$ and the cardinality of a set X by $\operatorname{card}(X)$. The catenation of two words u, v will be denoted either by $u v$ or by $u . v$.

Let M be a monoid with identity 1 . An operand over M (see, for example [3]) is a nonempty set T such that:

- with every pair $x \in M, u \in T$ is associated an element $x u \in T$ called the product of x and u;
$-(x y) u=x(y u) \forall x, y \in M, u \in T ;$
$-1 . u=u \forall u \in T$.
A nonempty subset T^{\prime} of T such that $u \in T^{\prime}$ implies $x u \in T^{\prime}, \quad \forall x \in M$, is called a suboperand of T over M and T^{\prime} itself is an operand over M.

For example, if X^{*} and X^{ω} are respectively the set of words and the set of ω-words over X, then X^{ω} is an operand over X^{*}.

An equivalence relation ρ over X^{ω} is said to be compatible if

$$
r \equiv s(\rho) \Rightarrow x r \equiv x s(\rho) \forall x \in X^{*}
$$

A compatible equivalence relation will also be called simply a congruence.
Remark. Let ρ be a congruence over X^{ω} and let $T=\left\{[u] \mid u \in X^{\omega}\right\}$ be the set of all the classes of ρ ($[u]$ denotes the class containing $u)$. Define the product of $x \in X^{*}$ and $[u]$ by $x[u]=[x u]$. Since ρ is a congruence, it is easy to see that this product is well defined (i.e. it does not depend on the choice of representatives for a given class). It follows then that T is an operand over X^{*}, called the quotient-operand modulo ρ.

Definition 2.1 An ω-language L defines on X^{ω} a binary relation S_{L} by:

$$
r \equiv s\left(S_{L}\right) \quad \text { iff }(x r \in L \Leftrightarrow x s \in L), x \in X^{*}, r, s \in X^{\omega}
$$

i.e. $L r^{-1}=L s^{-1}$, where $L r^{-1}=\left\{x \in X^{*} \mid x r \in L\right\}$.

The relation S_{L} is a congruence, i.e., a compatible equivalence relation, and will be called in the sequel the ω-syntactic congruence of L (see [10] for a similar notion).

An ω-language L is called (see [5])

- a left ω-ideal if $X^{*} L \subseteq L$ (i.e. if L is an X^{*}-subset);
- suffix closed or simply suf-closed if $X^{*[-1]} L \subseteq L$, i.e., if $x u \in L$ implies $u \in L$.
- absolutely closed if $L=X^{*} L^{\prime}$ for a suf-closed ω-language L^{\prime}.

For example, the ω-language $L=X^{*} a^{\omega}$ over $X=\{a, b\}$ is a left ω-ideal and it is suffix closed. The ω-language a^{ω} is suf-closed and hence L is absolutely closed. Remark that an absolutely closed ω-language is always a left ω-ideal.

The ω-language $W(L)=\left\{u \in X^{\omega} \mid L u^{-1}=\emptyset\right\}$ is called the ω - residue of $L \subseteq X^{\omega}$.

Proposition 2.1 Let L be an ω-language. The ω-syntactic congruence of L has the following properties:
(i) L is a union of classes of S_{L};
(ii) If R is a congruence and if L is a union of classes of R, then $R \subseteq S_{L}$.
(iii) If nonempty, the ω-residue $W(L)$ is a class of S_{L} and a left ω-ideal.

Proof. (i) Let $u \in L$ and suppose that $u \equiv v\left(S_{L}\right)$. Since $1 \in L u^{-1}=L v^{-1}$, the word $v=1 . v$ belongs to L.
(ii) Suppose that $u \equiv v(R)$. If $x \in L u^{-1}$, then $x u \in L$. From the compatibility of R it follows that $x u \equiv x v(R)$. The facts that L is a union of classes of R and $x u \in L$, imply that $x v \in L, x \in L v^{-1}$. Consequently, $L u^{-1} \subseteq L v^{-1}$. Similarly one can prove that $L v^{-1} \subseteq L u^{-1}$. Therefore, $u \equiv v\left(S_{L}\right)$ which implies $R \subseteq S_{L}$.
(iii) Immediate because $u \in W(L)$ if and only if $L u^{-1}=\emptyset$.

Corollary 2.1 If T is a class of a congruence R over X^{ω}, then $R \subseteq S_{T}$.
Proof. This is a special case of (ii).
Given an ω-language L, the index of R_{L} (respectively S_{L}) is the cardinality of the set of classes of R_{L} (respectively S_{L}).

Recall that an ω-language L is called μ-regular if the index of R_{L} is finite. The next result shows that the μ-regularity of an ω-language can be characterized either by the finiteness of the index of R_{L} in X^{*} or by the finiteness of S_{L} in X^{ω}.

Proposition 2.2 An ω-language $L \subseteq X^{\omega}$ is μ-regular if and only if the index of S_{L} is finite.

Proof. If the ω-language $L \subseteq X^{\omega}$ is μ-regular then the index of R_{L} is finite and therefore the set $\left\{w^{-1} \bar{L} \mid w \in X^{*}\right\}$ is finite. Remark that $L u^{-1}=$ $\bigcup_{w \in L u^{-1}}[w]_{R_{L}}$. Indeed, if $x \in[w]_{R_{L}}$ for some $w \in L u^{-1}$ then $x \equiv w\left(R_{L}\right)$ and $w u \in L$. This implies that for all $v \in X^{\omega}, x v \in L$ iff $w v \in L$. In particular, $w u \in L$ implies $x u \in L$, that is, $x \in L u^{-1}$. The other inclusion is obvious. If R_{L} is of finite index, the union is finite and there are only finitely many different unions, therefore the index of S_{L} is finite.

Conversely, note that $w^{-1} L=\bigcup_{u \in w^{-1} L}[u]_{S_{L}}$. Indeed if $v \in[u]_{S_{L}}, u \in w^{-1} L$ then $v \equiv u\left(S_{L}\right)$ and $w u \in L$. As $w u \in L$ iff $w v \in L$ we have $v \in w^{-1} L$. The other inclusion is obvious. If S_{L} is of finite index then the union is finite and there are only finitely many different unions. This further implies that the index of R_{L} is finite, i.e., L is μ-regular.

Example $1 X^{\omega}$ is μ-regular because the index of S_{L} is 1 .
Example $2 L=a^{\omega}=a a a \cdots a a a \cdots$ over $X=\{a, b\}$ is μ-regular. The classes of S_{L} are a^{ω} and the ω-residue $W\left(a^{\omega}\right)$. Therefore the index of S_{L} is 2 .

Example 3 Let $L=\left\{a^{n} b a^{\omega} \mid n \geq 1\right\}$ over $X=\{a, b\}$. The classes of S_{L} are L, $b a^{\omega}, a^{\omega}$ and $W(L)$ and the index of S_{L} is then 4.

If X^{*} is ordered lexicographically, $X^{*}=\left\{a, b, a^{2}, a b, b a, b^{2}, \cdots\right\}$, then the disjunctive ω-word $u=a b a^{2} a b b a b^{2} \cdots$ is not μ-regular because $S_{\{u\}}$ has an infinite index.

Proposition 2.3 Let L, L_{1}, L_{2} be ω-languages in X^{ω}. Then:
(i) $S_{L}=S_{\bar{L}}$ where \bar{L} denotes the complement of L in X^{ω};
(ii) $S_{L_{1}} \cap S_{L_{2}} \subseteq S_{L_{1} \cup L_{2}}$;
(iii) $S_{L_{1}} \cap S_{L_{2}} \subseteq S_{L_{1} \cap L_{2}}$.
(iv) If $T \subseteq X^{*}$ and $L, T \neq \emptyset$, then $S_{L} \subseteq S_{T^{-1} L}$ where $T^{-1} L=\{u \in$ $\left.X^{\omega} \mid \exists t \in T, t u \in L\right\}$.

Proof. (i) Immediate.
(ii) Let $u \equiv v\left(S_{L_{1}} \cap S_{L_{2}}\right)$, that is, $L_{1} u^{-1}=L_{1} v^{-1}$ and $L_{2} u^{-1}=L_{2} v^{-1}$. If $x u \in L_{1} \cup L_{2}$, then $x u \in L_{1}$ or $x u \in L_{2}$, hence $x v \in L_{1}$ or $x v \in L_{2}$. Therefore $x v \in L_{1} \cup L_{2}$, that is, $\left(L_{1} \cup L_{2}\right) u^{-1} \subseteq\left(L_{1} \cup L_{2}\right) v^{-1}$. By symmetry $\left(L_{1} \cup L_{2}\right) v^{-1} \subseteq\left(L_{1} \cup L_{2}\right) u^{-1}$ which implies $u \equiv v\left(S_{L_{1} \cup L_{2}}\right)$.
(iii) By (i) and (ii), we have:

$$
S_{L_{1}} \cap S_{L_{2}}=S_{\bar{L}_{1}} \cap S_{\bar{L}_{2}} \subseteq S_{\bar{L}_{1} \cup \bar{L}_{2}}=S_{L_{1} \cap L_{2}}
$$

(iv) Suppose $u \equiv v\left(S_{L}\right)$, that is, $L u^{-1}=L v^{-1}$. If $x \in T^{-1} L u^{-1}$, then $x u \in T^{-1} L$ and $t x u \in L$ for some $t \in T$. Hence $t x \in L u^{-1}=L v^{-1}, t x v \in L$ and $x v \in T^{-1} L$. Therefore $x \in T^{-1} L v^{-1}$ which shows that $T^{-1} L u^{-1} \subseteq T^{-1} L v^{-1}$. By symmetry, the converse inclusion also holds. Hence $u \equiv v\left(S_{T^{-1} L}\right)$.

The following proposition shows that all the congruences over X^{ω} can be obtained from the ω-syntactic congruences.

Proposition 2.4 Every congruence R (over X^{ω}) is the intersection of ω-syntactic congruences. More precisely, there exists a family of ω-languages $\Phi(R)=$ $\left\{L_{i} \mid i \in I\right\}$ such that:

$$
R=\bigcap_{i \in I} S_{L_{i}}
$$

Proof. We can choose, for example, the family $\Phi(R)$ to be the family of all the classes L_{i} of R. By Corollary 2.1, if L_{i} is a class of R, then $R \subseteq S_{L_{i}}$, hence $R \subseteq \bigcap_{i \in I} S_{L_{i}}$.

Suppose now that $u \equiv v\left(\bigcap_{i \in I} S_{L_{i}}\right)$ and let L_{j} be the class of R containing u. Then $u \equiv v\left(S_{L_{j}}\right)$, that is, $L_{j} u^{-1}=L_{j} v^{-1}$. As $1 . u=u \in L_{j}$, we have $1 \in L_{j} u^{-1}=L_{j} v^{-1}$ which implies $1 . v=v \in L_{j}$. Because L_{j} is a class of R, it follows that $u \equiv v(R)$ therefore $\bigcap_{i \in I} S_{L_{i}} \subseteq R$. Consequently,

$$
R=\bigcap_{i \in I} S_{L_{i}} .
$$

Recall that (see [5]) an ω-language $L \subseteq X^{\omega}$ is absolutely closed if and only if the syntactic monoid of $L, \operatorname{Syn}(L)$ is trivial, that is, $\operatorname{card}(\operatorname{Syn}(L))=1$. This is equivalent to the fact that P_{L} is the universal relation, i.e. has a unique class. $\left(\right.$ Here $\left.\operatorname{Syn}(L)=X^{*} / P_{L}.\right)$

Proposition 2.5 Let L be an absolutely closed ω-language, $L \neq X^{\omega}$. Then S_{L} has only two classes, L and the ω-residue $W(L)$.

Proof. By a result of [5], the ω-language L is absolutely closed if and only if L and the complement \bar{L} of L are left ω-ideals.

Let $u \in L$. Then $L u^{-1}=X^{*}$ and L is contained in a class of S_{L}. Since L is a union of classes of S_{L}, it follows that L is a class of S_{L}. The complement \bar{L} of L being a left ω-ideal is therefore contained in the ω-residue $W(L)$. Since L and $W(L)$ are classes of S_{L}, they are the only two classes of S_{L}.

Proposition 2.5 does not hold anymore in case L is a suf-closed ω-language. For example, let $X=\{a, b\}$ and $L=\left\{a^{\omega}, b^{\omega}\right\}$. L is suf-closed but S_{L} has three classes: a^{ω}, b^{ω} and $W(L)$.

In fact, there exist suf-closed ω-languages with the property that S_{L} has infinitely many classes.

Indeed, let $X=\{0,1,2, \cdots, 9\}$ and let

$$
\begin{aligned}
u_{1}= & 12345678910111213 \cdots \\
u_{2}= & 234567891011121314 \cdots \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
u_{n}= & n(n+1)(n+2) \cdots
\end{aligned}
$$

Then L is suf-closed but S_{L} has infinitely many equivalence classes.
A nonempty ω-language L is called suffix-free (outfix-free) or simply suf-free (out-free) if $u, x u \in L(y u, y x u \in L)$ implies $x=1$. An out-free ω-language is always suf-free.

For example, the ω-language $L=a b a^{2} b^{2} \cdots a^{n} b^{n} \cdots$ over $X=\{a, b\}$ is outfree.

Proposition 2.6 Let L be an ω-language. Then:
(i) If L is suf-free, L is a class of S_{L}.
(ii) If L is out-free, then every class T of $S_{L}, T \neq W(L)$, is a suf-free ω-language.

Proof. (i) If $u \in L$, then $L u^{-1}=\{1\}$, hence L is contained in a class T of S_{L}. If $v \in T$, then $L v^{-1}=\{1\}$ and therefore $v=1 . v \in L$. Consequently, $L=T$.
(ii) Suppose that u and $x u=v$ are words in T. Since $T \neq W(L)$, there exists $y \in X^{*}$ such that $y u \in L$. From $u \equiv v\left(S_{L}\right)$ it follows that $y u \equiv y v\left(S_{L}\right)$. Since $y u \in L, y v=y x u \in L$. On the other hand, the fact that L is out-free implies that $x=1$, that is T is suf-free.

3 Omega-dense and separative ω-languages

An ω-language $L \subseteq X^{\omega}$ is called dense iff for any word $x \in X^{*}$, there exist $u \in X^{*}$ and $y \in X^{\omega}$ such that $u x y \in L$. In other words, L is called dense iff any word of X^{*} occurs as a subword of a word of L.

One can generalize the notion of density from X^{*} to X^{ω} in the following natural fashion. An ω-language L will be called ω-dense if any infinite word occurs as a subword of a word in L. Formally,

Definition 3.1 An ω-language L is called ω-dense if its ω-residue $W(L)=\emptyset$.

If $S u f(L)=\left\{v \in X^{\omega} \mid \exists x \in X^{*}, \exists u \in L, u=x v\right\}$ is the set of all suffixes of words in L, then it is immediate that L is ω-dense iff $\operatorname{Suf}(L)=X^{\omega}$.

Let $X=\{a, b, \cdots\}$. Then $X^{\omega}, a X^{\omega}$ and $b X^{\omega}$ are examples of ω-dense ω languages. Generally if L is ω-dense, then $A L$ is ω-dense for all $A \subseteq X^{*}, A \neq \emptyset$.

Remark that, if $\left\{x_{1}, x_{2}, \cdots\right\}$ is any ordering of X^{+}, the ω-word $u=x_{1} x_{2} \ldots$ obtained by catenating the ordered sequence $\left\{x_{1}, x_{2}, \ldots\right\}$ is disjunctive, hence dense. However, the following proposition shows that u is not ω-dense.

Proposition 3.1 Every ω-dense ω-language L over an alphabet X with at least two letters, is infinite.

Proof. Let $X=\{a, b, \cdots\}$ be an alphabet of cardinality greater than 1 and assume, by reductio ad absurdum, that the ω-dense ω-language $L=\left\{u_{1}, u_{2}, \cdots\right.$, $\left.u_{n}\right\}$ over X is finite.

Consider the finite language $\left\{v_{i} \mid 1 \leq i \leq n+1\right\}$ where $v_{i}=\left(a^{i} b^{i}\right)^{\omega}$. Since L is ω-dense, there exist words $x_{1}, x_{2}, \cdots, x_{n}, x_{n+1}$ such that

$$
x_{1} v_{1} \in L, x_{2} v_{2} \in L, \cdots, x_{n} v_{n} \in L, x_{n+1} v_{n+1} \in L
$$

As L contains only n distinct words, the equality $u_{i}=x_{i} v_{i}=x_{j} v_{j}$ will hold for some $i \neq j$, that is,

$$
u_{i}=x_{i}\left(a^{i} b^{i}\right)^{\omega}=x_{j}\left(a^{j} b^{j}\right)^{\omega}, i \neq j
$$

This implies $a=b-\mathrm{a}$ contradiction. Consequently, our assumption that L is finite was false.

Recall (see, for example, [8]) that a subset P of X^{*} is called dense (in X^{*}) if for every $w \in X^{*}$ there exist words $x, y \in X^{*}$ such that $x w y$ belongs to P.

For $L \subseteq X^{\omega}$, let $\operatorname{Pr} f(L)=\left\{x \in X^{*} \mid \exists u \in L, u=x v\right\}$ be the set of all prefixes of the words in L. The next result gives a connection between the ω-density of an ω-language and the density of the set if its prefixes.

Proposition 3.2 If L is ω-dense, then $\operatorname{Prf}(L)$ is dense (in X^{*}).
Proof. Let w be a word in X^{*} and consider the ω-word w^{ω}. As L is an ω-dense ω-language, there exists $x \in X^{*}$ such that $x w^{\omega} \in L$. This implies, for example, that $x w w$ is in $\operatorname{Prf}(L)$. This means that we have found the words $x, w \in X^{*}$ with the property $x w w \in \operatorname{Prf}(L)$, which assures that $\operatorname{Prf}(L)$ is dense.

The notion of density in X^{*} is closely connected with the notion of disjunctivity. An ω-language is disjunctive if its congruence P_{L} is the equality. A disjunctive ω-language is dense, but the converse does not hold. An analogous of disjunctivity when considering relations over X^{ω} is the separativeness.

An ω-language L is separative if its ω-syntactic congruence separates all the words of X^{ω} : every word of X^{ω} belongs to a different equivalence class.

Definition 3.2 An ω-language L is called
(i) separative iff $L u^{-1}=L v^{-1}$ implies $u=v$.
(ii) quasi-separative iff $L u^{-1}=L v^{-1} \neq \emptyset$ implies $u=v$.

In other words, L is separative if S_{L} is the identity and quasi-separative if S_{L} is the identity outside the ω-residue $W(L)$.

It is easy to see that L is separative iff for every pair $u, v \in X^{\omega}, u \neq v$, there exists $x \in X^{*}$ such that $x u \in L, x v \notin L$ or vice versa. Simple examples seem to be difficult to find. The following proposition shows how to obtain separative languages from special types of partitions of Y^{+}, where $Y \subset X$ and $|X| \geq 2$.

Remark that if $|X|=1$ then $\left|X^{\omega}\right|=1$ and the language X^{ω} is trivially separative.

Proposition 3.3 Let X be a finite alphabet with $|X| \geq 2$, let $a \in X$ and let $Y=X \backslash\{a\}$. Furthermore let $\Pi=\left\{Y_{0}, Y_{1}, \ldots, Y_{n}, \ldots\right\}$ be a partition of Y^{+} with infinitely many classes, all of them infinite. Then there exists a separative language asociated to this partition.

Proof. For $n \geq 0$, let

$$
T_{n}=\left\{u \in X^{\omega} \mid u=a^{n} w, w \notin a X^{\omega}\right\} .
$$

Let \mathbf{c} be the cardinality of the set of the real numbers. The set X^{ω} and the sets $T_{n}, n \geq 0$, have the same cardinality c. Consequently, these sets can be listed using the same set I of indices where I has the cardinality \mathbf{c} :

$$
T_{n}=\left\{u_{n_{i}} \in X^{\omega} \mid i \in I\right\}, n \geq 0
$$

Each class Y_{n} of the partition Π contains infinitely many words of Y^{+}. For each n, let P_{n} be the set of all nonempty subsets of Y_{n}. Clearly the cardinality of each P_{n} is \mathbf{c}. This implies in particular that the elements of P_{n} can be listed using the same index set I :

$$
P_{n}=\left\{S_{n_{i}} \mid i \in I, S_{n_{i}} \subseteq Y_{n}, S_{n_{i}} \neq \emptyset\right\}
$$

Furthermore, $S_{n_{i}} \cap S_{m_{j}}=\emptyset$ for $n \neq m$.
The ω-language L is defined in the following way.
For each $n \geq 0$ and $i \in I$, let $L_{n_{i}}=S_{n_{i}} a u_{n_{i}}$. Then:

$$
L=\bigcup_{n \geq 0, i \in I} L_{n_{i}} \cup a^{\omega}
$$

Let us show that L is separative, that is, $L u^{-1} \neq L v^{-1}$ for all $u, v \in X^{\omega}, u \neq v$.. We have to consider the following cases.

Case 1. $u \in T_{m}, v \in T_{n}$ with $m \neq n$. Then $u=u_{m_{i}}, v=u_{n_{j}}$ with $i, j \in I$ and $u=a^{m} b \alpha, v=a^{n} c \beta$ where $m, n \geq 0, b, c \in Y$ and $\alpha, \beta \in X^{\omega}$.

Without loss of generality, we can assume that $m<n$. If $x \in S_{m_{i}}$, then $x a u=x a u_{m_{i}} \in L_{m_{i}} \subseteq L$. By the definition of the sets $S_{r_{k}}, x \in S_{m_{i}}$ implies that $x \notin S_{r_{k}}$ for $r \neq m$. Therefore $x a v=x a u_{n_{j}} \notin L$ and $L u^{-1} \neq L v^{-1}$.

Case 2. $u \in T_{n}, v \in T_{n}$ and $u=u_{n_{i}}, v=u_{n_{j}}$. Since $u \neq v$, we must have $i \neq j$. Furthermore $u=a^{n} b \alpha, v=a^{n} c \beta, b, c \in Y, \alpha, \beta \in X^{\omega}$. Since $i \neq j$, then we have $S_{n_{i}} \neq S_{n_{j}}$. Hence there exists $x \in S_{n_{i}}, x \notin S_{n_{j}}$ or vice versa. Suppose the first case. Then $x a u \in L_{n_{i}} \subseteq L$, but xav $\notin L_{n_{j}}$. Since $v=u_{n_{j}}$, then, from the definition of the ω-languages $L_{r_{s}}$ and L, we have $x a u_{n_{j}} \in L$ iff $x a u_{n_{j}} \in L_{n_{j}}$ iff $x \in S_{n_{j}}$, in contradiction with $x \notin S_{n_{j}}$.

Case 3. $u \in T_{n}, v=a^{\omega}$. Suppose $L u^{-1}=L v^{-1}$. Clearly $a^{k} \in L v^{-1}$ for $k \geq 0$. Since $u=u_{n_{i}}=a^{n} b \alpha$, then $a^{k} a a^{n} b \alpha \in L$ for $k \geq 0$, a contradiction because $x a a^{n} b \alpha \in L$ implies $x \in Y^{+}$and $a^{k} \notin Y^{+} . \square$

Proposition 3.4 Every separative ω-language L is ω-dense.
Proof. If L is not ω-dense, then its ω-residue $\mathrm{W}(\mathrm{L})$ is non empty. Furthermore, $\mathrm{W}(\mathrm{L})$ is infinite and $\mathrm{W}(\mathrm{L})$ is a class of the congruence S_{L}. Since L is separative, S_{L} is the identity, a contradiction.

While it is difficult to find simple examples of separative ω-languages, this is no more the case for quasi-separative ω-languages as shown in the following proposition.

Proposition 3.5 Every ω-word u is quasi-separative.
Proof. Let u be an ω-word and let $r \equiv s\left(S_{u}\right)$ with $r, s \notin W(u)$. Then there exist $x, y \in X^{*}$ such that $u=x r=y s$. The equality $u r^{-1}=u s^{-1}$ implies $x \in u s^{-1}$ and $u=x r=y s=x s$. This further implies $r=s$, therefore u is quasi-separative.

Let $L \subseteq X^{\omega}$ be an ω-language with a non empty ω-residue $W(L)$. We can construct a congruence ρ on X^{ω} in the following way: $W(L)$ is a class ρ and all the other classes of ρ are the singletons taken from the complement of $W(L)$. By analogy with semigroups, such a congruence will be called the Rees congruence associated with the ω-residue of L (see [3]).

Proposition 3.6 Let L be an ω-language such that $W(L) \neq \emptyset$. Then
(i) L is quasi-separative $\Leftrightarrow S_{L}$ is the Rees congruence associated with $W(L)$.
(ii) L is quasi-separative and $\bar{L}=W(L) \Leftrightarrow S_{L}$ is the identity on L and $\bar{L}=X^{\omega} \backslash L$ is a class of S_{L}.

Proof. (i) " \Rightarrow " Since $u \in W(L)$ if and only if $L u^{-1}=\emptyset$, it is clear that $W(L)$ is a class of S_{L}. Since S_{L} is the identity on $X^{\omega} \backslash W(L)$, it follows that S_{L} is the Rees congruence associated with $W(L)$.
$" \Leftarrow "$ Since the Rees congruence is the identity outside the ω-residue, S_{L} is the identity on $X^{\omega} \backslash W(L)$, that is, L is quasi-separative.
(ii) " \Rightarrow " If $u, v \in L$, we have $L u^{-1}=L v^{-1}=\emptyset$, that is, $u \equiv v\left(S_{L}\right)$. If $u, v \in L, u \neq v$, then $L u^{-1} \neq \emptyset, L v^{-1} \neq \emptyset$. Since L is quasi-separative, we have $L u^{-1} \neq L v^{-1}$, i.e., u is not equivalent to v modulo S_{L}. Therefore S_{L} is the identity on L and \bar{L} is a class of S_{L}.
$" \Leftarrow "$ Suppose that $L u^{-1}=L v^{-1} \neq \emptyset$. This implies there exists $x \in X^{*}$ such that $x u, x v \in L$. Since $u \equiv v\left(S_{L}\right)$ and S_{L} is compatible, $x u \equiv x v\left(S_{L}\right)$. Since S_{L} is the identity on L and $x u, x v \in L$, then $x u=x v$ therefore $u=v$. This means L is separative. It is easy to see that $W(L)=\bar{L}$.

Proposition 3.7 Let L be a μ-regular ω-language. If L is quasi-separative, then L is finite.

Proof. The ω-language L is a union of classes of S_{L} (Proposition 2.1) Since L is μ-regular, the index of S_{L} is finite(Proposition 2.2). If L is not finite, then there exists a class T of S_{L} such that $T \subseteq L$ and T infinite. If $u, v \in T$ with $u \neq v$, then $L u^{-1}=L v^{-1} \neq \emptyset$, a contradiction because L is separative. Therefore L is finite.

4 Congruences S_{L} and P_{L}

In this section, we consider a connection between the ω-syntactic congruence S_{L} on X^{ω} and the congruence P_{L} on X^{*} associated with an ω-language L.

With every congruence ρ on X^{ω}, one can associate a congruence $s(\rho)$ on X^{*} defined in the following way:

$$
c s(\rho) d \Leftrightarrow c u \equiv d u(\rho) \forall u \in X^{\omega}
$$

Proposition 4.1 The relation $s(\rho)$ is a congruence on X^{*}.
Proof. It is immediate that $s(\rho)$ is an equivalence relation. Since ρ is compatible, it follows then that $s(\rho)$ is left compatible. Let $x \in X^{*}$. Since $x u \in X^{\omega}$, from $c u \equiv d u(\rho)$ for all u, it follows that $c x u \equiv d x u(\rho)$ (take for u the word $x u)$. Hence $c x u \equiv d x u(\rho)$ for all $u \in X^{\omega}$ therefore $c x \equiv d x(s(\rho))$, which implies that $s(\rho)$ is right compatible. Consequently, $s(\rho)$ is a congruence of X^{*}.

Remark. If ρ is the universal relation on X^{ω}, then $s(\rho)$ is also the universal relation on X^{*}. If ρ is the identity on X^{ω}, then $s(\rho)$ is the identity on X^{*}.

The next proposition shows how the congruence P_{L} of L is related to the ω-syntactic congruence S_{L}.

Proposition 4.2 If $L \subseteq X^{\omega}$, then $P_{L}=s\left(S_{L}\right)$.
Proof. Suppose that $c \equiv d\left(P_{L}\right), c, d \in X^{*}$. This means that, for every $x \in X^{*}$ and $u \in X^{\omega}, x c u \in L \Leftrightarrow x d u \in L$. This further implies $c u \equiv d u\left(S_{L}\right)$ for every $u \in X^{\omega}$ and hence $\operatorname{cs}\left(S_{L}\right) d$. Therefore $P_{L} \subseteq s\left(S_{L}\right)$.

Suppose now that $c s\left(S_{L}\right) d$, i.e. $c u \equiv d u\left(S_{L}\right) \forall u \in X^{\omega}$. This implies that for every $x \in X^{*}, x c u \in L \Leftrightarrow x d u \in L$, i.e. $c \equiv d\left(P_{L}\right)$, and $s\left(S_{L}\right) \subseteq P_{L}$.

Therefore $P_{L}=s\left(S_{L}\right)$.
We give now a few examples of the connection between S_{L} and P_{L}.
Example 1 Let $L=a^{\omega}$ over $X=\{a, b\}$. The classes of S_{L} are a^{ω} and $W\left(a^{\omega}\right)$. The classes of P_{L} are a^{*} and $\left\{x b y \mid x, y \in X^{*}\right\}$. The syntactic monoid of L is isomorphic to the monoid consisting of only 1 and 0 .

Example 2 Let $L=\left\{a^{\omega}, b^{\omega}\right\}$ over $X=\{a, b\}$. Then the classes of S_{L} are a^{ω}, b^{ω} and $W(L)$. The classes of P_{L} are $\{1\}, a^{+}, b^{+}$and $X^{+} \backslash\left\{a^{+}, b^{+}\right\}$.

Example 3 If $L=\left\{a^{n} b a^{\omega} \mid n \geq 1\right\}$ over $X=\{a, b\}$, then the classes of S_{L} are $L, a^{\omega}, b a^{\omega}, W(L)$. The classes of P_{L} are $\{1\}, a^{+},\{b\},\{a b\}, b X^{+} \cup X^{*} b^{2} X^{*}$.
Example 4 Let $L=\{u\}$ be an ω-word. By Proposition 3.5, u is quasiseparative and the classes of S_{u} are the ω-residue $W(L)$ (if not empty) and the singletons consisting of the ω-words in $U=X^{\omega} \backslash W(L)$. Let

$$
\begin{gathered}
u=a_{1} a_{2} \ldots a_{k} \ldots, \quad u_{1}=u, u_{2}=a_{2} \ldots a_{k} \ldots, \quad u_{k}=a_{k} a_{k+1} \ldots \\
v_{0}=a_{1}, \quad v_{1}=a_{1} a_{2}, \ldots, v_{k}=a_{1} a_{2} \ldots a_{k+1}, \ldots
\end{gathered}
$$

where a_{i} are letters in X. Then $U=\left\{u_{1}, u_{2}, \ldots, u_{k}, \ldots\right\}$.
Let $T=\left\{v_{k} \mid k \geq 0\right\}$. If $x \equiv v_{k}\left(P_{L}\right)$, then, in particular, $x u_{k} \equiv v_{k} u_{k}\left(S_{L}\right)$. Since $v_{k} u_{k}=u \in L$, we have $x u_{k} \equiv u\left(S_{L}\right)$, i.e., $r x u_{k}=u$ iff $r u=u$. Hence $r=1, x u_{k}=u=v_{k} u_{k}$ and $x=v_{k}$. Therefore every word in T is a class of P_{L}.

Let $x \notin T$. If $x w \in T$, then $x w=u_{i}$ with $u=v_{i} u_{i}$ and $v_{i} x w=v_{i} u_{i}=$ u. Since this is true for u in particular, $v_{i} x u=u, x=1$ and $x \in T-\mathrm{a}$ contradiction. It follows then that $x w \in W(L)$, a class of S_{L}. Hence $x, y \in T$ implies $x w, y w \in W(L)$, i.e., $x w \equiv y w\left(S_{L}\right)$ for all $w \in X^{\omega}$ and $x \equiv y\left(P_{L}\right)$. Therefore $\bar{T}=X^{*} \backslash T$ is a class of P_{L}.

5 Compatible quasi-orders and orders on X^{ω}

Recall that a binary relation σ on a set S is called a quasi-order if it is reflexive and transitive (see, for example [2]).

If L is an ω-language, the relation $\sigma(L)$ defined by

$$
u \sigma(L) v \Leftrightarrow L u^{-1} \subseteq L v^{-1}
$$

is a quasi-order on X^{ω} that will be called the principal quasi-order associated with the ω-language L.

If σ is a quasi-order on X^{ω}, then σ is said to be compatible if $u, v \in X^{\omega}$, $x \in X^{*}$ and $u \sigma v$ imply $x u \sigma x v$.

In this section we show that all the compatible quasi-orders on X^{ω} can be obtained from the principal quasi-orders.

Proposition 5.1 Let $L \subseteq X^{\omega}$ be an ω-language. Then:
(i) The principal quasi-order $\sigma(L)$ is compatible, i.e., $u \sigma(L) v$ implies $x u \sigma(L) x v$ for all $x \in X^{*}$.
(ii) For every $w \in W(L)$ and $u \in X^{\omega}$ we have $w \sigma(L) u$.
(iii) If L is a quasi-separative ω-language, then $\sigma(L)$ is a compatible partial order on $X^{\omega} \backslash W(L)$.

Proof. (i) Let $u \sigma(L) v$ and $x \in X^{*}$. We have to show that $x u \sigma(L) x v$, that is, $L(x u)^{-1} \subseteq L(x v)^{-1}$. Suppose first that $L u^{-1} \neq \emptyset$. If $y \in L(x u)^{-1}$, then $y x u \in L, y x \in L u^{-1} \subseteq L v^{-1}$ which shows that $y x v \in L$ and $y \in L(x v)^{-1}$. This implies $L(x u)^{-1} \subseteq L(y u)^{-1}$, i.e., $x u \sigma(L) x v$.

Suppose now that $L u^{-1}=\emptyset$, that is, $u \in W(L)$. Since $W(L)$ is a left ω-ideal, $x u \in W(L)$ and $L(x u)^{-1}=\emptyset \subseteq L(x v)^{-1}$. Therefore $x u \sigma(L) x v$.
(ii) If $w \in W(L)$, then $L w^{-1}=\emptyset \subseteq L u^{-1}$, hence $w \sigma(L) u$.
(iii) By $(i), \sigma(L)$ is a compatible quasi-order. Suppose $u \sigma(L) v$ and $v \sigma(L) u$ with $u, v \notin W(L)$. Then $L u^{-1} \subseteq L v^{-1}$ and $L v^{-1} \subseteq L u^{-1}$, hence $L u^{-1}=$ $L v^{-1} \neq \emptyset$. Since L is quasi-separative, we have $u=v$ and therefore $\sigma(L)$ is anti-symmetric on $X^{\omega} \backslash W(L)$.

Let $X=\{a, b\}$ and let X^{*} be listed under the lexicographic order:

$$
X^{*}=\left\{a, b, a^{2}, a b, b a, b^{2}, \cdots\right\}
$$

Let $u=a b a^{2} a b b a b^{2} \cdots$ be the catenation of the words from the above listing. Construct the sequence:

$$
u_{1}=a b a^{2} a b b a b^{2} \ldots, u_{2}=b a^{2} a b b a b^{2} \ldots, u_{3}=a^{2} a b b a b^{2} \ldots, \ldots
$$

Let $L=\left\{u_{1}, u_{2}, u_{3}, \ldots\right\}$. Then

$$
L u_{1}^{-1}=\{1\}, L u_{2}^{-1}=\{1, a\}, L u_{3}^{-1}=\{1, a, a b\}, \ldots
$$

Clearly the ω-language L is quasi-separative and $L u_{i}^{-1} \subset L u_{i+1}^{-1}$. Hence $\sigma(L)$ is a compatible partial order on $X^{\omega} \backslash W(L)=L$:

$$
u_{1} \sigma(L) u_{2} \sigma(L) u_{3} \sigma(L) \cdots \sigma(L) u_{i} \sigma(L) u_{i+1} \sigma(L) \cdots
$$

Let σ be a quasi-order on X^{ω}. An upper section is a nonempty subset S such that $u \in S$ and $u \sigma x$ implies $x \in S$. For every $u \in X^{\omega}$, the set $[u)=\left\{x \in X^{\omega} \mid u \sigma x\right\}$ is an upper section called the monogenic upper section generated by u.

Lemma 5.1 If σ is a compatible quasi-order of X^{ω} and if $L=[u)$ is a monogenic upper section of σ, then $\sigma \subseteq \sigma(L)$.

Proof. Suppose that $r \sigma s$ and let $x \in L r^{-1}$. Then $x r \in L$ and $u \sigma x r$. Since σ is compatible, $x r \sigma x s$ and $u \sigma x s$. Hence $x s \in L, x \in L s^{-1}$ and $L r^{-1} \subseteq L s^{-1}$. Therefore $r \sigma(L) s$ and $\sigma \subseteq \sigma(L)$.

Proposition 5.2 (i) If $\Lambda=\left\{L_{i} \mid i \in I\right\}$ is a family of ω-languages, then the relation $\sigma(\Lambda)$ defined by

$$
\sigma(\Lambda)=\bigcap_{i \in I} \sigma\left(L_{i}\right)
$$

is a compatible quasi-order on X^{ω}.
(ii) If σ is a compatible quasi-order on X^{ω}, then there exists a family of ω-languages $\Lambda=\left\{L_{i} \mid i \in I\right\}$ such that $\sigma=\sigma(\Lambda)$.

Proof. (i) Immediate because the intersection of compatible partial orders is a compatible partial order.
(ii) Take for the family $\Lambda=\left\{L_{i} \mid i \in I\right\}$ the set of all monogenic upper sections L_{i} of σ. We will show that $\sigma=\sigma(\Lambda)$. First, by Lemma 5.1, we have $\sigma \subseteq \bigcap_{i \in I} \sigma\left(L_{i}\right)=\sigma(\Lambda)$. Suppose that $\sigma \neq \sigma(\Lambda)$. Then there exist $r, s \in X^{\omega}$ such that $r \sigma(\Lambda) s$ and r not in relation σ with s. If $K=\left\{x \in X^{*} \mid r \sigma x\right\}$ is the monogenic section generated by r, then $r \in K$ and $1 \in K r^{-1}$. Since $K \in \Lambda$, then $r \sigma(K) s$ and $K r^{-1} \subseteq K s^{-1}$. Consequently, $1 \in K s^{-1}, s \in K$ and $r \sigma s$, a contradiction. Therefore $\sigma=\sigma(\Lambda)$.

A family $\Lambda=\left\{L_{i} \mid i \in I\right\}$ of ω-languages $L_{i} \subseteq X^{\omega}$ is said to be strong if

$$
L_{i} u^{-1}=L_{i} v^{-1} \forall i \in I \Rightarrow u=v
$$

Proposition 5.3 (i) If $\Lambda=\left\{L_{i} \mid i \in I\right\}$ is a strong family of ω-languages, then the relation $\sigma(\Lambda)$ defined by

$$
\sigma(\Lambda)=\bigcap_{i \in I} \sigma\left(L_{i}\right)
$$

is a compatible partial order on X^{ω}.
(ii) If σ is a compatible partial order on X^{ω}, then there exists a strong family of ω-languages $\Lambda=\left\{L_{i} \mid i \in I\right\}$ such that $\sigma=\sigma(\Lambda)$.

Proof. (i) By Proposition 5.2, $\sigma(\Lambda)$ is a compatible quasi-order. Since the family Λ is strong, this implies that the quasi-order $\sigma(\Lambda)$ is antisymmetic and hence a compatible partial order.
(ii) As in the proof of the preceding proposition, take for the family $\Lambda=$ $\left\{L_{i} \mid i \in I\right\}$ the set of all monogenic upper sections L_{i} of σ. Then we have $\sigma=\sigma(\Lambda)$. What is left to show is that the family Λ is strong.

Suppose that Λ is not strong. Then there exist $u, v \in X^{\omega}, u \neq v$, such that $L_{i} u^{-1}=L_{i} v^{-1}$ for all the monogenic upper sections L_{i} of σ. Let $U=[u)$ and $V=[v)$ be the monogenic sections of u, respectively v. Since $1 \in U u^{-1}$, $1 \in U v^{-1}, v=1 . v \in U$ and $u \sigma v$. Using the same argument, it can be shown that $v \sigma u$. Since σ is a partial order, this implies $u=v$, a contradiction.

If L is a separative ω-language, then the relation $\sigma(L)$ defined by $u \sigma(L) v \Leftrightarrow$ $L u^{-1} \subseteq L v^{-1}$ is an order relation on X^{ω} that will be called the principal order associated with L. It is easy to see that this order is the identity iff $L u^{-1} \subseteq L v^{-1}$ implies $u=v$.
Proposition 5.4 Let $L \subseteq X^{w}$ be a separative ω-language. Then the principlal order $\sigma(L)$ is compatible.
Proof. Let $u \sigma(L) v$ and $x \in X^{*}$. Since L is separative, then L is ω-dense and hence $L(x u)^{-1} \neq \emptyset$. Let $y \in L(x u)^{-1}$. This implies $y u x \in L, y x \subseteq L u^{-1}=$ $L v^{-1}, y x v \in L$ and $y \in L(x v)^{-1}$. Therefore $L(x u)^{-1} \subseteq L(x v)^{-1}$. Similarly $L(x v)^{-1} \subseteq L(x u)^{-1}$. Hence $L(x u)^{-1}=L(x v)^{-1}$ and $x u \sigma(L) x v$.

Acknowledgements. We thank the anonymous referee for observations and comments which have been incorporated in Introduction and Proposition 2.2.

References

[1] A.Arnold, A syntactic congruence for rational ω-languages. Theoretical Computer Science, 39(1985), 333-335.
[2] G.Birkhoff, Lattice Theory, Amer.Math.Soc.Coll.Publ. XXV, Third Edition, Providence (1967).
[3] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Mathematical Surveys, vol 1. and vol. 2, Amer. Math. Soc., Providence (1961, 1967).
[4] H. Jürgensen, H.J. Shyr and G. Thierrin, Disjunctive ω-languages, J. Information Processing and Cybernetics, EIK 19(1983), 267-278.
[5] H. Jürgensen and G. Thierrin, On ω-languages whose syntactic monoid is trivial, Intern. J. Comp. and Information Sciences 12(1983), 359-365.
[6] H. Jürgensen and G. Thierrin, Which monoids are syntactic monoids of ω languages? J. Information Processing and Cybernetics, EIK 22(1986), 513 -526.
[7] O.Maler, L.Staiger. On syntactic congruences for ω-languages. Proc.STACS 93, LNCS 665, Springer Verlag, Berlin, 1993, 586-594.
[8] H.J.Shyr, Free monoids and languages, Lecture Notes, National ChungHsing University, Hon Min Book, Taichung, Taiwan (1991).
[9] W.Thomas. Automata on infinite objects, In J.Van Leeuwen (Ed.), Handbook of Theoretical Computer Science, vol.B, Elsevier, Amsterdam, 1990, 133-191.
[10] Th.Wilke, An Eilenberg theorem for ∞-languages. Proc.ICALP 91, LNCS 510, Springer Verlag, Berlin 1991, 588-599.

[^0]: ${ }^{*}$ This research was supported by Grant OGP0007877 of the Natural Sciences and Engineering Research Council of Canada

